Gravity-Matter Sum Rules in models with a single extra-dimension (2024)

A. de Giorgiarturo.degiorgi@uam.esDepartamento de Física Teórica and Instituto de Física Teórica UAM/CSIC,
Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
Department of Physics & Laboratory for Particle Physics and Cosmology,
Harvard University, Cambridge, MA 02138, USA
  S.Voglstefan.vogl@physik.uni-freiburg.deAlbert-Ludwigs-Universität Freiburg, Physikalisches Institut
Hermann-Herder-Str. 3, 79104 Freiburg,Germany

Abstract

We prove a set of sum rules needed for KK-graviton pair production from matter in orbifolded extra-dimensional models. The sum rules can be found in full generality by considering the properties of solutions to the Sturm-Liouville problem, which describes the wave functions and the masses of the KK-gravitons in four dimensions.They ensure cancellations in the amplitudes of the processes mentioned above which considerably reduce their growth with s𝑠sitalic_s in the high-energy limit. This protects extra-dimensional theories from the low-scale unitarity problems that plague other theories with massive spin-2 particles.We argue that such relations are valid for a broader category of models thus generalizing our previous results that were limited to the large μ𝜇\muitalic_μ limit of the Randall-Sundrum model.

preprint: IFT-UAM/CSIC-23-139

I Introduction

As is well known the longitudinal mode of the polarization tensor of massive spin-2 particles is proportional to E2/m2superscript𝐸2superscript𝑚2E^{2}/m^{2}italic_E start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT where E𝐸Eitalic_E is the energy of the particle and m𝑚mitalic_m its mass. This leads to a strong growth of amplitudes with these particles as external states with the Mandelstam s𝑠sitalic_s in the Fierz-Pauli theory[1]. Consequently, perturbative unitarity breaks down at a significantly lower energy scale than the effective theory suggests. For spin-2 scattering the amplitude grows as s5superscript𝑠5s^{5}italic_s start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT while the production of pairs of spin-2 particles from matter fields grows as s3superscript𝑠3s^{3}italic_s start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT.Due to the clear connection between gravity and spin-2 fields, there is a great interest in curing this behaviour since this might allow the construction of a theory of massive gravity which could help to address various cosmological questions. At present, the best-behaved theory with a single massive spin-2 particle features polynomial interaction terms for the spin-2 particle that reduce the growth in scattering to s3superscript𝑠3s^{3}italic_s start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT [2, 3, 4].

The situation is different in extra-dimensional theories where massive spin-2 particles arise as degrees of freedom in an effective theory from the Kaluza-Klein(KK) decomposition of higher-dimensional gravity. In this case, the fundamental scale of the theory is given by the higher-dimensional Planck mass. Therefore, a lower breakdown scale, as implied by a growth of the amplitudes faster than s𝑠sitalic_s, is not expected. It is avoided by a subtle cancellation between the contributions of the full KK tower which restores perturbative unitarity of tree level amplitudes up to the Planck scale [5, 6, 7, 8, 9, 10, 11]. To achieve this cancellation the KK-gravitons need to fulfil several intricate consistency conditions that can be expressed as sum rules for masses and the coefficient of the KK-graviton vertices.

In this work, we discuss how the sum rules for graviton pair production can be proven in a general and mathematically exact way by studying the properties of the Sturm-Liouville(SL) equation. The explicit connection between SL equation and scattering amplitudes involving KK gravitons was first carried out in Ref.[6]. In such reference and in Refs.[7, 8] the properties of the SL equation are used to show how amplitudes in KK-scattering in large-s𝑠sitalic_s limit vanish. On the same lines, we apply such a technique to the case of graviton-matter annihilation. This generalizes the results of our earlier work [10] were a proof of the sum rules in the large μ𝜇\muitalic_μ limit of the RS-model was given 111Another work that studies this generalization and also considers bulk matter fields appeared simultaneously to this work in Ref.[12]..

For illustration, we demonstrate how they cancel the leading powers in s𝑠sitalic_s of an expansion of the amplitudes ins𝑠sitalic_s

(s)=(3)s3+,𝑠superscript3superscript𝑠3\mathcal{M}(s)=\mathcal{M}^{(3)}s^{3}+\dots\,,caligraphic_M ( italic_s ) = caligraphic_M start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT italic_s start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + … ,(1.1)

for KK-graviton pair productionexplicitly in RS.These cancellations are of great interest for phenomenological studies. For example, spin-2 particles have been considered as mediators to the dark sector or directly as dark matter particles [13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. For these studies it is of crucial importance how the amplitudes that control the cross sections behave at high momentum transfer.

The paper is organized as follows. First, we discuss some general properties of compactifications and the Sturm-Liouville equations that are then used to derive a set of sum rules for the masses and integrals of the wave functions. In Sec.III we apply these to scattering processes in the RS model and demonstrate that they are sufficient to ensure the cancellations of the most offending contributions to the amplitude and bring their growth with energy down. However, they are not sufficient to cancel the spurious growth completely and need to be supplemented by compactification-dependent sum rules for the radion contribution to achieve the full cancellation.Finally, we summarize our results and provide a brief outlook in Sec.V.

II Compactification and Sturm-Liouville equation

II.1 Compactification

Our primary focus is on orbifolded 5D theories of gravity with an extra compact dimension of size R𝑅Ritalic_R. More specifically, the 5D space-time is compactified under an S1/2superscript𝑆1superscript2S^{1}/\mathbb{Z}^{2}italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT / roman_ℤ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT orbifold symmetry yielding a 1D bulk bounded by two 4-dimensional (4D) branes located at y=0𝑦0y=0italic_y = 0 and y=πR𝑦𝜋𝑅y=\pi Ritalic_y = italic_π italic_R, where y𝑦yitalic_y is the coordinate of the 5th-dimension.We consider Einstein-Hilbert gravity in five dimensions

Sbulk=M532d4xπRπRdyg(2ΛB),subscript𝑆bulksuperscriptsubscript𝑀532superscriptd4𝑥superscriptsubscript𝜋𝑅𝜋𝑅d𝑦𝑔2subscriptΛ𝐵\displaystyle S_{\text{bulk}}=\frac{M_{5}^{3}}{2}\int\text{d}^{4}x\int\limits_%{-\pi R}^{\pi R}\text{d}y\sqrt{g}(\mathcal{R}-2\Lambda_{B})\,,italic_S start_POSTSUBSCRIPT bulk end_POSTSUBSCRIPT = divide start_ARG italic_M start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG ∫ d start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_x ∫ start_POSTSUBSCRIPT - italic_π italic_R end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_π italic_R end_POSTSUPERSCRIPT d italic_y square-root start_ARG italic_g end_ARG ( caligraphic_R - 2 roman_Λ start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT ) ,(2.1)

where g𝑔gitalic_g is the determinant of the 5D metric, \mathcal{R}caligraphic_R the Ricci scalar, M5subscript𝑀5M_{5}italic_M start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT the 5D Planck mass, and ΛBsubscriptΛ𝐵\Lambda_{B}roman_Λ start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT denotes the vacuum energy of the bulk.Regarding the matter content, we consider models where matter fields are localized on the branes, i.e. on the boundaries of the 5th dimension.

The gravitational particle content is obtained by expanding the metric around the 5D-Minkowski metric

gMN=ηMN+κhMN,subscript𝑔𝑀𝑁subscript𝜂𝑀𝑁𝜅subscript𝑀𝑁g_{MN}=\eta_{MN}+\kappa h_{MN}\,,italic_g start_POSTSUBSCRIPT italic_M italic_N end_POSTSUBSCRIPT = italic_η start_POSTSUBSCRIPT italic_M italic_N end_POSTSUBSCRIPT + italic_κ italic_h start_POSTSUBSCRIPT italic_M italic_N end_POSTSUBSCRIPT ,(2.2)

where hMNsubscript𝑀𝑁h_{MN}italic_h start_POSTSUBSCRIPT italic_M italic_N end_POSTSUBSCRIPT is the metric perturbation κ2/M53/2𝜅2superscriptsubscript𝑀532\kappa\equiv 2/M_{5}^{3/2}italic_κ ≡ 2 / italic_M start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT.In the suitable coordinates, the relevant components of the metric perturbation hMNsubscript𝑀𝑁h_{MN}italic_h start_POSTSUBSCRIPT italic_M italic_N end_POSTSUBSCRIPT are its tensorial, hμνsubscript𝜇𝜈h_{\mu\nu}italic_h start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT, and scalar, r𝑟ritalic_r, ones; they are typically dubbed graviton and radion, respectively. Five-dimensional fields can be expanded via the so-called Kaluza-Klein(KK)-decomposition in terms of an orthonormal basis, {ψn(y)}nsubscriptsubscript𝜓𝑛𝑦𝑛\{\psi_{n}(y)\}_{n}{ italic_ψ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_y ) } start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, of the compactified dimension. For hμν(x,y)subscript𝜇𝜈𝑥𝑦h_{\mu\nu}(x,y)italic_h start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT ( italic_x , italic_y ) it amounts to

hμν(x,y)=1Rn=0hμν(n)(x)ψn(y),subscript𝜇𝜈𝑥𝑦1𝑅superscriptsubscript𝑛0subscriptsuperscript𝑛𝜇𝜈𝑥subscript𝜓𝑛𝑦h_{\mu\nu}(x,y)=\dfrac{1}{\sqrt{R}}\sum\limits_{n=0}^{\infty}h^{(n)}_{\mu\nu}(%x)\psi_{n}(y)\,,italic_h start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT ( italic_x , italic_y ) = divide start_ARG 1 end_ARG start_ARG square-root start_ARG italic_R end_ARG end_ARG ∑ start_POSTSUBSCRIPT italic_n = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_h start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT ( italic_x ) italic_ψ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_y ) ,(2.3)

In the effective 4D theory, this procedure generates an infinite tower of 4D gravitons.The expansion of the metric of Eq.(2.2) can be conveniently chosen such that the 4D gravitons are already in the mass basis and have canonical kinetic and mass terms.As the specific value of R𝑅Ritalic_R is not relevant to our discussion, we work with y𝑦yitalic_y in units of R𝑅Ritalic_R, which effectively amounts to setting R=1𝑅1R=1italic_R = 1, and thus y[π,π]𝑦𝜋𝜋y\in[-\pi,\pi]italic_y ∈ [ - italic_π , italic_π ].

The ansatz for the metric can be parametrized as[23]

ds2=e2k|y|(ημνdxμdxνe6lk|y|dy2),dsuperscript𝑠2superscript𝑒2𝑘𝑦subscript𝜂𝜇𝜈dsuperscript𝑥𝜇dsuperscript𝑥𝜈superscript𝑒6𝑙𝑘𝑦dsuperscript𝑦2\text{d}s^{2}=e^{-2k|y|}\left(\eta_{\mu\nu}\text{d}x^{\mu}\text{d}x^{\nu}-e^{6%lk|y|}\text{d}y^{2}\right)\,,d italic_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_e start_POSTSUPERSCRIPT - 2 italic_k | italic_y | end_POSTSUPERSCRIPT ( italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT d italic_x start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT d italic_x start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT - italic_e start_POSTSUPERSCRIPT 6 italic_l italic_k | italic_y | end_POSTSUPERSCRIPT d italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ,(2.4)

where ημν=diag(1,1,1,1)subscript𝜂𝜇𝜈diag1111\eta_{\mu\nu}=\text{diag}(1,-1,-1,-1)italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT = diag ( 1 , - 1 , - 1 , - 1 ) is the Minkowski metric and kΛBsimilar-to𝑘subscriptΛ𝐵k\sim\sqrt{-\Lambda_{B}}italic_k ∼ square-root start_ARG - roman_Λ start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT end_ARG.This ansatz interpolates between several popular models, i.e. LED(k=0𝑘0k=0italic_k = 0)[24], RS(l=1/3𝑙13l=1/3italic_l = 1 / 3)[25] and CW(l=0𝑙0l=0italic_l = 0)[23].The corresponding equation of motion for the graviton wave function along the direction of the fifth dimension, ψnsubscript𝜓𝑛\psi_{n}italic_ψ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, reads

[y294(1+l)2k2+e6lk|y|mn2]e32(1+l)k|y|ψn(|y|)=0,,delimited-[]superscriptsubscript𝑦294superscript1𝑙2superscript𝑘2superscript𝑒6𝑙𝑘𝑦superscriptsubscript𝑚𝑛2superscript𝑒321𝑙𝑘𝑦subscript𝜓𝑛𝑦0\left[\partial_{y}^{2}-\frac{9}{4}(1+l)^{2}k^{2}+e^{6lk|y|}m_{n}^{2}\right]e^{%-\frac{3}{2}(1+l)k|y|}\psi_{n}(|y|)=0\\,,[ ∂ start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - divide start_ARG 9 end_ARG start_ARG 4 end_ARG ( 1 + italic_l ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_e start_POSTSUPERSCRIPT 6 italic_l italic_k | italic_y | end_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] italic_e start_POSTSUPERSCRIPT - divide start_ARG 3 end_ARG start_ARG 2 end_ARG ( 1 + italic_l ) italic_k | italic_y | end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( | italic_y | ) = 0 , ,(2.5)

where mnsubscript𝑚𝑛m_{n}italic_m start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT is the mass of the graviton hμν(n)superscriptsubscript𝜇𝜈𝑛h_{\mu\nu}^{(n)}italic_h start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT.This is a particular case of a Sturm-Liouville (SL) equation as expected given that the Einstein-Hilbert action only contains up to two derivatives and all hom*ogeneous second-order ordinary differential equations can be brought to SL form.

To ease readability of the main text, we briefly review some of them in the next section.

II.2 The Sturm-Liouville Equationn

II.2.1 General Properties

The SL equation is a real second-order linear ordinary differential equation with interesting properties and many applications in physics. In the following, we briefly recapitulate some of the basics that matter for our discussion. For a more systematic presentation of its mathematical properties and the proofs see for example Ref.[26]. In its most general form, it reads

1dy[p(y)dψdy]+q(y)ψ=λr(y)ψ.1d𝑦delimited-[]𝑝𝑦d𝜓d𝑦𝑞𝑦𝜓𝜆𝑟𝑦𝜓-\frac{1}{\text{d}y}\left[p(y)\frac{\text{d}\psi}{\text{d}y}\right]+q(y)\psi=%\lambda r(y)\psi\,.- divide start_ARG 1 end_ARG start_ARG d italic_y end_ARG [ italic_p ( italic_y ) divide start_ARG d italic_ψ end_ARG start_ARG d italic_y end_ARG ] + italic_q ( italic_y ) italic_ψ = italic_λ italic_r ( italic_y ) italic_ψ .(2.6)

The function r(y)𝑟𝑦r(y)italic_r ( italic_y ) is sometimes referred to as the weight and λ𝜆\lambdaitalic_λ as the eigenvalue of the equation.The SL equation together with boundary conditions for the solution constitutes the so-called SL problem. The eigenvalue is generically not specified, and it is part of the SL problem to find suitable eigenvalues for which non-trivial solutions exist.If p(y)𝑝𝑦p(y)italic_p ( italic_y ) and r(y)>0𝑟𝑦0r(y)>0italic_r ( italic_y ) > 0 while p(y),p(y),q(y),r(y)𝑝𝑦superscript𝑝𝑦𝑞𝑦𝑟𝑦p(y),\,p^{\prime}(y),\,q(y),\,r(y)italic_p ( italic_y ) , italic_p start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_y ) , italic_q ( italic_y ) , italic_r ( italic_y ) are continuous in the interval [a,b]𝑎𝑏[a,b][ italic_a , italic_b ], and the boundary conditions are given in the form

α1ψ(a)+α2ψ(a)=0,β1ψ(b)+β2ψ(b)=0,formulae-sequencesubscript𝛼1𝜓𝑎subscript𝛼2superscript𝜓𝑎0subscript𝛽1𝜓𝑏subscript𝛽2superscript𝜓𝑏0\alpha_{1}\psi(a)+\alpha_{2}\psi^{\prime}(a)=0\,,\qquad\beta_{1}\psi(b)+\beta_%{2}\psi^{\prime}(b)=0\,,italic_α start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_ψ ( italic_a ) + italic_α start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_ψ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_a ) = 0 , italic_β start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_ψ ( italic_b ) + italic_β start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_ψ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_b ) = 0 ,(2.7)

the SL problem is said to be regular. Regular SL problems satisfy the following properties:

  1. 1.

    There exist an infinite countable number of real eigenvalues {λn}n=0superscriptsubscriptsubscript𝜆𝑛𝑛0\{\lambda_{n}\}_{n=0}^{\infty}{ italic_λ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT } start_POSTSUBSCRIPT italic_n = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT that can be ordered such that

    λ0<λ1<<λn<<.subscript𝜆0subscript𝜆1subscript𝜆𝑛\lambda_{0}<\lambda_{1}<\dots<\lambda_{n}<\dots<\infty\,.italic_λ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT < italic_λ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT < ⋯ < italic_λ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT < ⋯ < ∞ .(2.8)
  2. 2.

    For each eigenvalue λisubscript𝜆𝑖\lambda_{i}italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT there exists a unique eigenfunction ψi(y)subscript𝜓𝑖𝑦\psi_{i}(y)italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_y ), up to rescalings.

  3. 3.

    The solutions form an orthonormal basis of the Hilbert space L2([a,b],r(y)dy)superscript𝐿2𝑎𝑏𝑟𝑦d𝑦L^{2}([a,b],r(y)\text{d}y)italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( [ italic_a , italic_b ] , italic_r ( italic_y ) d italic_y ), that is

    ψi|ψjabdyr(y)ψi(y)ψj(y)=δij.inner-productsubscript𝜓𝑖subscript𝜓𝑗superscriptsubscript𝑎𝑏d𝑦𝑟𝑦subscript𝜓𝑖𝑦subscript𝜓𝑗𝑦subscript𝛿𝑖𝑗\innerproduct{\psi_{i}}{\psi_{j}}\equiv\int_{a}^{b}\text{d}y\,r(y)\psi_{i}(y)%\psi_{j}(y)=\delta_{ij}\,.⟨ start_ARG italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG | start_ARG italic_ψ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT end_ARG ⟩ ≡ ∫ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT d italic_y italic_r ( italic_y ) italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_y ) italic_ψ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_y ) = italic_δ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT .(2.9)

This also implies that any function, f(y)𝑓𝑦f(y)italic_f ( italic_y ) can be expanded within the interval (a,b)𝑎𝑏(a,b)( italic_a , italic_b ) as

f(y)|f=n=0|ψnψn|f=n=0cnψn(y),wherecn=abdyr(y)ψn(y)f(y).formulae-sequence𝑓𝑦ket𝑓superscriptsubscript𝑛0ketsubscript𝜓𝑛inner-productsubscript𝜓𝑛𝑓superscriptsubscript𝑛0subscript𝑐𝑛subscript𝜓𝑛𝑦wheresubscript𝑐𝑛superscriptsubscript𝑎𝑏d𝑦𝑟𝑦subscript𝜓𝑛𝑦𝑓𝑦\begin{split}&f(y)\equiv\ket{f}=\sum\limits_{n=0}^{\infty}\ket{\psi_{n}}%\innerproduct{\psi_{n}}{f}=\sum\limits_{n=0}^{\infty}c_{n}\psi_{n}(y)\,,\\&\text{where}\quad c_{n}=\int_{a}^{b}\text{d}y\,r(y)\psi_{n}(y)f(y)\,.\end{split}start_ROW start_CELL end_CELL start_CELL italic_f ( italic_y ) ≡ | start_ARG italic_f end_ARG ⟩ = ∑ start_POSTSUBSCRIPT italic_n = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT | start_ARG italic_ψ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_ARG ⟩ ⟨ start_ARG italic_ψ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_ARG | start_ARG italic_f end_ARG ⟩ = ∑ start_POSTSUBSCRIPT italic_n = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_c start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_ψ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_y ) , end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL where italic_c start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = ∫ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT d italic_y italic_r ( italic_y ) italic_ψ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_y ) italic_f ( italic_y ) . end_CELL end_ROW(2.10)

Such information can be conveniently encoded in functional representation via the completeness relation

δ(yy)=k=0r(y)ψk(y)ψk(y).𝛿𝑦superscript𝑦superscriptsubscript𝑘0𝑟𝑦subscript𝜓𝑘𝑦subscript𝜓𝑘superscript𝑦\delta(y-y^{\prime})=\sum\limits_{k=0}^{\infty}r(y)\psi_{k}(y)\psi_{k}(y^{%\prime})\,.italic_δ ( italic_y - italic_y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = ∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_r ( italic_y ) italic_ψ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_y ) italic_ψ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) .(2.11)

Finally, one can show that, for q=0𝑞0q=0italic_q = 0, if ψisubscript𝜓𝑖\psi_{i}italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is a solution of the SL equation, then p(y)yψi(y)𝑝𝑦subscript𝑦subscript𝜓𝑖𝑦p(y)\partial_{y}\psi_{i}(y)italic_p ( italic_y ) ∂ start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_y ) is also a solution with r1/p𝑟1𝑝r\to 1/pitalic_r → 1 / italic_p and p1/r𝑝1𝑟p\to 1/ritalic_p → 1 / italic_r. This implies orthogonality relations among the derivatives of ψisubscript𝜓𝑖\psi_{i}italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT of the form

abdyp(y)(yψi)(yψj)=λiδij.superscriptsubscript𝑎𝑏d𝑦𝑝𝑦subscript𝑦subscript𝜓𝑖subscript𝑦subscript𝜓𝑗subscript𝜆𝑖subscript𝛿𝑖𝑗\int_{a}^{b}\text{d}y\,p(y)\left(\partial_{y}\psi_{i}\right)\left(\partial_{y}%\psi_{j}\right)=\lambda_{i}\delta_{ij}\,.∫ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT d italic_y italic_p ( italic_y ) ( ∂ start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ( ∂ start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT italic_ψ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) = italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_δ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT .(2.12)

Given the above-mentioned properties, the SL equation can be recast as an eigenvalue problem (from which the name of λ𝜆\lambdaitalic_λ derives) of a linear operator L𝐿Litalic_L, such that

L[ψi](y)=λiψi(y),𝐿delimited-[]subscript𝜓𝑖𝑦subscript𝜆𝑖subscript𝜓𝑖𝑦L[\psi_{i}](y)=\lambda_{i}\psi_{i}(y)\,,italic_L [ italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ] ( italic_y ) = italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_y ) ,(2.13)

with

L[f](y)1r(y)(dmissingdy[p(y)dfdy]+q(y)f).𝐿delimited-[]𝑓𝑦1𝑟𝑦dmissingd𝑦delimited-[]𝑝𝑦d𝑓d𝑦𝑞𝑦𝑓L[f](y)\equiv-\dfrac{1}{r(y)}\left(\dfrac{\text{d}missing}{\text{d}y}\left[p(y%)\dfrac{\text{d}f}{\text{d}y}\right]+q(y)f\right)\,.italic_L [ italic_f ] ( italic_y ) ≡ - divide start_ARG 1 end_ARG start_ARG italic_r ( italic_y ) end_ARG ( divide start_ARG d roman_missing end_ARG start_ARG d italic_y end_ARG [ italic_p ( italic_y ) divide start_ARG d italic_f end_ARG start_ARG d italic_y end_ARG ] + italic_q ( italic_y ) italic_f ) .(2.14)

The SL operator is self-adjoint within the interval [a,b]𝑎𝑏[a,b][ italic_a , italic_b ]. In the following, we will write ΩΩ\Omegaroman_Ω and ΩΩ\partial\Omega∂ roman_Ω to indicate the domain of integration and its boundary, respectively.

II.2.2 Useful Definitions and basic properties

The effective couplings involving the KK-tower of gravitons can be derived by integrating out the 5th dimension. They correspond to n-points integrals containing either no or two derivatives of ψisubscript𝜓𝑖\psi_{i}italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT. For this reason, it is useful to study the nlimit-from𝑛n-italic_n -point integrals

ai1,i2,,insubscript𝑎subscript𝑖1subscript𝑖2subscript𝑖𝑛\displaystyle a_{i_{1},i_{2},\dots,i_{n}}italic_a start_POSTSUBSCRIPT italic_i start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_i start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , italic_i start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPTΩdyr(y)ψi1ψi2ψi3ψin,absentsubscriptΩd𝑦𝑟𝑦subscript𝜓subscript𝑖1subscript𝜓subscript𝑖2subscript𝜓subscript𝑖3subscript𝜓subscript𝑖𝑛\displaystyle\equiv\int_{\Omega}\text{d}y\ r(y)\psi_{i_{1}}\psi_{i_{2}}\psi_{i%_{3}}\dots\psi_{i_{n}}\,,≡ ∫ start_POSTSUBSCRIPT roman_Ω end_POSTSUBSCRIPT d italic_y italic_r ( italic_y ) italic_ψ start_POSTSUBSCRIPT italic_i start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_ψ start_POSTSUBSCRIPT italic_i start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_ψ start_POSTSUBSCRIPT italic_i start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT … italic_ψ start_POSTSUBSCRIPT italic_i start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT ,(2.15)
bi1,i2,,insubscript𝑏subscript𝑖1subscript𝑖2subscript𝑖𝑛\displaystyle b_{i_{1},i_{2},\dots,i_{n}}italic_b start_POSTSUBSCRIPT italic_i start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_i start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , italic_i start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPTΩdyp(y)(yψi1)(yψi2)ψi3ψin,absentsubscriptΩd𝑦𝑝𝑦subscript𝑦subscript𝜓subscript𝑖1subscript𝑦subscript𝜓subscript𝑖2subscript𝜓subscript𝑖3subscript𝜓subscript𝑖𝑛\displaystyle\equiv\int_{\Omega}\text{d}y\ p(y)\left(\partial_{y}\psi_{i_{1}}%\right)\left(\partial_{y}\psi_{i_{2}}\right)\psi_{i_{3}}\dots\psi_{i_{n}}\,,≡ ∫ start_POSTSUBSCRIPT roman_Ω end_POSTSUBSCRIPT d italic_y italic_p ( italic_y ) ( ∂ start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT italic_ψ start_POSTSUBSCRIPT italic_i start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) ( ∂ start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT italic_ψ start_POSTSUBSCRIPT italic_i start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) italic_ψ start_POSTSUBSCRIPT italic_i start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT … italic_ψ start_POSTSUBSCRIPT italic_i start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT ,(2.16)

where the indices i1,i2,,insubscript𝑖1subscript𝑖2subscript𝑖𝑛i_{1},i_{2},\dots,i_{n}italic_i start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_i start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , italic_i start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT will indicate the number of the n𝑛nitalic_n gravitons involved in the interaction. Notice that the first two indices of bi1,i2,,insubscript𝑏subscript𝑖1subscript𝑖2subscript𝑖𝑛b_{i_{1},i_{2},\dots,i_{n}}italic_b start_POSTSUBSCRIPT italic_i start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_i start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , italic_i start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT commute between themselves, but not with the others and vice versa.With Eq.(2.9) and (2.12) one immediately finds that for n=2𝑛2n=2italic_n = 2 the integrals are given by

aij=δij,subscript𝑎𝑖𝑗subscript𝛿𝑖𝑗\displaystyle a_{ij}=\delta_{ij}\,,italic_a start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT = italic_δ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ,bij=λiδij.subscript𝑏𝑖𝑗subscript𝜆𝑖subscript𝛿𝑖𝑗\displaystyle b_{ij}=\lambda_{i}\delta_{ij}\,.italic_b start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT = italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_δ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT .(2.17)

The ai1,,insubscript𝑎subscript𝑖1subscript𝑖𝑛a_{i_{1},\dots,i_{n}}italic_a start_POSTSUBSCRIPT italic_i start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_i start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT and bi1,,insubscript𝑏subscript𝑖1subscript𝑖𝑛b_{i_{1},\dots,i_{n}}italic_b start_POSTSUBSCRIPT italic_i start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_i start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT coefficients are not fully independent one from another. They can be related by integration by parts via Eq.(2.6). In fact, for any function f(y)𝑓𝑦f(y)italic_f ( italic_y ) we have that

Ωdyp(y)yfyψi=p(y)fyψi|Ω+λidyr(y)fψi+dyq(y)fψi.subscriptΩd𝑦𝑝𝑦subscript𝑦𝑓subscript𝑦subscript𝜓𝑖evaluated-at𝑝𝑦𝑓subscript𝑦subscript𝜓𝑖Ωsubscript𝜆𝑖d𝑦𝑟𝑦𝑓subscript𝜓𝑖d𝑦𝑞𝑦𝑓subscript𝜓𝑖\begin{split}\int_{\Omega}\text{d}y\ p(y)\partial_{y}f\partial_{y}\psi_{i}=&%\left.p(y)f\partial_{y}\psi_{i}\right|_{\partial\Omega}+\lambda_{i}\int\text{d%}y\ r(y)f\psi_{i}\\&+\int\text{d}y\ q(y)f\psi_{i}\,.\end{split}start_ROW start_CELL ∫ start_POSTSUBSCRIPT roman_Ω end_POSTSUBSCRIPT d italic_y italic_p ( italic_y ) ∂ start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT italic_f ∂ start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = end_CELL start_CELL italic_p ( italic_y ) italic_f ∂ start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT | start_POSTSUBSCRIPT ∂ roman_Ω end_POSTSUBSCRIPT + italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∫ d italic_y italic_r ( italic_y ) italic_f italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL + ∫ d italic_y italic_q ( italic_y ) italic_f italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT . end_CELL end_ROW(2.18)

The above relation can be further simplified in the case q=0𝑞0q=0italic_q = 0 and yψi|Ω=0evaluated-atsubscript𝑦subscript𝜓𝑖Ω0\partial_{y}\psi_{i}|_{\partial\Omega}=0∂ start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT | start_POSTSUBSCRIPT ∂ roman_Ω end_POSTSUBSCRIPT = 0. By choosing ψi=ψi1subscript𝜓𝑖subscript𝜓subscript𝑖1\psi_{i}=\psi_{i_{1}}italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_ψ start_POSTSUBSCRIPT italic_i start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT and f(y)=ψi2ψin𝑓𝑦subscript𝜓subscript𝑖2subscript𝜓subscript𝑖𝑛f(y)=\psi_{i_{2}}\dots\psi_{i_{n}}italic_f ( italic_y ) = italic_ψ start_POSTSUBSCRIPT italic_i start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT … italic_ψ start_POSTSUBSCRIPT italic_i start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT, one obtains

λi1ai1,i2,,in=ji2,,inbi1,j,Xj,subscript𝜆subscript𝑖1subscript𝑎subscript𝑖1subscript𝑖2subscript𝑖𝑛subscript𝑗subscript𝑖2subscript𝑖𝑛subscript𝑏subscript𝑖1𝑗subscript𝑋𝑗\lambda_{i_{1}}a_{i_{1},i_{2},\dots,i_{n}}=\sum\limits_{j\in{i_{2},\dots,i_{n}%}}b_{i_{1},j,X_{j}}\,,italic_λ start_POSTSUBSCRIPT italic_i start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_i start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_i start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , italic_i start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT = ∑ start_POSTSUBSCRIPT italic_j ∈ italic_i start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , italic_i start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_b start_POSTSUBSCRIPT italic_i start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_j , italic_X start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT end_POSTSUBSCRIPT ,(2.19)

where Xjsubscript𝑋𝑗X_{j}italic_X start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT includes all the indices except i1subscript𝑖1i_{1}italic_i start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and j𝑗jitalic_j.For n=2𝑛2n=2italic_n = 2 this recovers the orthogonality relations. The first non-trivial case is for n=3𝑛3n=3italic_n = 3. It reads

λiaijk=bijk+bikj,subscript𝜆𝑖subscript𝑎𝑖𝑗𝑘subscript𝑏𝑖𝑗𝑘subscript𝑏𝑖𝑘𝑗\lambda_{i}a_{ijk}=b_{ijk}+b_{ikj}\ ,italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT = italic_b start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT + italic_b start_POSTSUBSCRIPT italic_i italic_k italic_j end_POSTSUBSCRIPT ,(2.20)

which implies

bijk=12aijk(λi+λjλk).subscript𝑏𝑖𝑗𝑘12subscript𝑎𝑖𝑗𝑘subscript𝜆𝑖subscript𝜆𝑗subscript𝜆𝑘b_{ijk}=\frac{1}{2}a_{ijk}\left(\lambda_{i}+\lambda_{j}-\lambda_{k}\right)\ .italic_b start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_a start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT ( italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + italic_λ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT - italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) .(2.21)

The above equation shows that for n=3𝑛3n=3italic_n = 3 all b𝑏bitalic_b-coefficients can be unambiguously traded for a𝑎aitalic_a-coefficients. This special case allows the translation of many of the results for the sum rules of one type of coefficient to the other and vice versa.

In the next section, we will make use of such relations and definitions to prove sum rules involving a𝑎aitalic_a- and b𝑏bitalic_b-coefficients that will be relevant for the physics involving the scattering of gravitons and gravitons pair production.

II.3 SL Sum Rules

For convenience, the most relevant sum rules and relations needed for the amplitudes are collected in Table1.

Sum Rule\mathcal{M}caligraphic_M
k=0ψk(π)aijk=ψi(π)ψj(π)superscriptsubscript𝑘0subscript𝜓𝑘𝜋subscript𝑎𝑖𝑗𝑘subscript𝜓𝑖𝜋subscript𝜓𝑗𝜋\sum\limits_{k=0}^{\infty}\psi_{k}(\pi)a_{ijk}=\psi_{i}(\pi)\psi_{j}(\pi)∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_π ) italic_a start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT = italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_π ) italic_ψ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_π )(3)superscript3\mathcal{M}^{(3)}caligraphic_M start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT
k=0ψk(π)λkaijk=ψi(π)ψj(π)(λi+λj)superscriptsubscript𝑘0subscript𝜓𝑘𝜋subscript𝜆𝑘subscript𝑎𝑖𝑗𝑘subscript𝜓𝑖𝜋subscript𝜓𝑗𝜋subscript𝜆𝑖subscript𝜆𝑗\sum\limits_{k=0}^{\infty}\psi_{k}(\pi)\lambda_{k}a_{ijk}=\psi_{i}(\pi)\psi_{j%}(\pi)(\lambda_{i}+\lambda_{j})∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_π ) italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT = italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_π ) italic_ψ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_π ) ( italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + italic_λ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT )(2)superscript2\mathcal{M}^{(2)}caligraphic_M start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT
k=0ψk(π)bkij=λiψi(π)ψj(π)superscriptsubscript𝑘0subscript𝜓𝑘𝜋subscript𝑏𝑘𝑖𝑗subscript𝜆𝑖subscript𝜓𝑖𝜋subscript𝜓𝑗𝜋\sum\limits_{k=0}^{\infty}\psi_{k}(\pi)b_{kij}=\lambda_{i}\psi_{i}(\pi)\psi_{j%}(\pi)∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_π ) italic_b start_POSTSUBSCRIPT italic_k italic_i italic_j end_POSTSUBSCRIPT = italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_π ) italic_ψ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_π )(2)superscript2\mathcal{M}^{(2)}caligraphic_M start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT
k=0ψk(π)bijk=0superscriptsubscript𝑘0subscript𝜓𝑘𝜋subscript𝑏𝑖𝑗𝑘0\sum\limits_{k=0}^{\infty}\psi_{k}(\pi)b_{ijk}=0∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_π ) italic_b start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT = 0(2)superscript2\mathcal{M}^{(2)}caligraphic_M start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT
k=1ψk(π)λkaijk(λiλj)2=(λi+λj)[ψi(π)ψj(π)+ψ02δij]6ψrbijrsuperscriptsubscript𝑘1subscript𝜓𝑘𝜋subscript𝜆𝑘subscript𝑎𝑖𝑗𝑘superscriptsubscript𝜆𝑖subscript𝜆𝑗2subscript𝜆𝑖subscript𝜆𝑗delimited-[]subscript𝜓𝑖𝜋subscript𝜓𝑗𝜋superscriptsubscript𝜓02subscript𝛿𝑖𝑗6subscript𝜓𝑟subscript𝑏𝑖𝑗𝑟\sum\limits_{k=1}^{\infty}\dfrac{\psi_{k}(\pi)}{\lambda_{k}}a_{ijk}(\lambda_{i%}-\lambda_{j})^{2}=(\lambda_{i}+\lambda_{j})\left[\psi_{i}(\pi)\psi_{j}(\pi)+%\psi_{0}^{2}\delta_{ij}\right]-6\psi_{r}b_{ijr}∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT divide start_ARG italic_ψ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_π ) end_ARG start_ARG italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_ARG italic_a start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT ( italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - italic_λ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = ( italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + italic_λ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) [ italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_π ) italic_ψ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_π ) + italic_ψ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_δ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ] - 6 italic_ψ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_b start_POSTSUBSCRIPT italic_i italic_j italic_r end_POSTSUBSCRIPT(2)superscript2\mathcal{M}^{(2)}caligraphic_M start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT
k=1ψk(π)bkirλk=Aπ2ψrψi(π)ψrairrsubscript𝑘1subscript𝜓𝑘𝜋subscript𝑏𝑘𝑖𝑟subscript𝜆𝑘superscriptsubscript𝐴𝜋2subscript𝜓𝑟subscript𝜓𝑖𝜋subscript𝜓𝑟subscript𝑎𝑖𝑟𝑟\sum\limits_{k=1}\psi_{k}(\pi)\dfrac{b_{kir}}{\lambda_{k}}=A_{\pi}^{-2}\psi_{r%}\psi_{i}(\pi)-\psi_{r}a_{irr}∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT italic_ψ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_π ) divide start_ARG italic_b start_POSTSUBSCRIPT italic_k italic_i italic_r end_POSTSUBSCRIPT end_ARG start_ARG italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_ARG = italic_A start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_π ) - italic_ψ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_i italic_r italic_r end_POSTSUBSCRIPT(2)superscript2\mathcal{M}^{(2)}caligraphic_M start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT
bijk=12aijk(λi+λjλk)subscript𝑏𝑖𝑗𝑘12subscript𝑎𝑖𝑗𝑘subscript𝜆𝑖subscript𝜆𝑗subscript𝜆𝑘b_{ijk}=\frac{1}{2}a_{ijk}\left(\lambda_{i}+\lambda_{j}-\lambda_{k}\right)italic_b start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_a start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT ( italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + italic_λ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT - italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT )-

The diagrams that involve such sums are shown in Fig.1.

Gravity-Matter Sum Rules in models with a single extra-dimension (1)

As can be seen, the graviton wave functions enter in the total amplitude either localized on the brane or at most linearly via aijksubscript𝑎𝑖𝑗𝑘a_{ijk}italic_a start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT when integrated over the bulk. Since we have already in mind the physical application, we will consider Ω={0,π}Ω0𝜋\partial\Omega=\{0,\pi\}∂ roman_Ω = { 0 , italic_π }, but the results only require the constant parts to be evaluated on the boundary, i.e. ψi(Ω)subscript𝜓𝑖Ω\psi_{i}(\partial\Omega)italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( ∂ roman_Ω ), (yψi)(Ω)subscript𝑦subscript𝜓𝑖Ω(\partial_{y}\psi_{i})(\partial\Omega)( ∂ start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ( ∂ roman_Ω ).

The main task is to compute sum rules involving kψk(π)aijksubscript𝑘subscript𝜓𝑘𝜋subscript𝑎𝑖𝑗𝑘\sum_{k}\psi_{k}(\pi)a_{ijk}∑ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_ψ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_π ) italic_a start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT222Notice that all the sum rules we derive for y=π𝑦𝜋y=\piitalic_y = italic_π equally apply to y=0𝑦0y=0italic_y = 0. and related.Applying the Liouville operator, one finds the general relation (α0)𝛼0(\alpha\geq 0)( italic_α ≥ 0 )

n=0ψn(π)λnα(Ωdyr(y)ψn(y)f(y))=Lα[f(y)]|y=π.superscriptsubscript𝑛0subscript𝜓𝑛𝜋superscriptsubscript𝜆𝑛𝛼subscriptΩd𝑦𝑟𝑦subscript𝜓𝑛𝑦𝑓𝑦evaluated-atsuperscript𝐿𝛼delimited-[]𝑓𝑦𝑦𝜋\sum\limits_{n=0}^{\infty}\psi_{n}(\pi)\lambda_{n}^{\alpha}\left(\int_{\Omega}%\text{d}y\,r(y)\psi_{n}(y)f(y)\right)=\left.L^{\alpha}[f(y)]\right|_{y=\pi}\,.∑ start_POSTSUBSCRIPT italic_n = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_π ) italic_λ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT ( ∫ start_POSTSUBSCRIPT roman_Ω end_POSTSUBSCRIPT d italic_y italic_r ( italic_y ) italic_ψ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_y ) italic_f ( italic_y ) ) = italic_L start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT [ italic_f ( italic_y ) ] | start_POSTSUBSCRIPT italic_y = italic_π end_POSTSUBSCRIPT .(2.22)

Taking f(y)=ψiψj𝑓𝑦subscript𝜓𝑖subscript𝜓𝑗f(y)=\psi_{i}\psi_{j}italic_f ( italic_y ) = italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_ψ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT and α=0𝛼0\alpha=0italic_α = 0, leads to

k=0ψk(π)aijk=ψi(π)ψj(π).superscriptsubscript𝑘0subscript𝜓𝑘𝜋subscript𝑎𝑖𝑗𝑘subscript𝜓𝑖𝜋subscript𝜓𝑗𝜋\displaystyle\sum\limits_{k=0}^{\infty}\psi_{k}(\pi)a_{ijk}=\psi_{i}(\pi)\psi_%{j}(\pi)\,.∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_π ) italic_a start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT = italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_π ) italic_ψ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_π ) .(2.23)

This result is completely general, independently of q(y)𝑞𝑦q(y)italic_q ( italic_y ) or on the boundary conditions. As for the quadratic sum rules, by dimensional analysis, Eq.(2.23) is relevant to cancel the leading order, (3)superscript3\mathcal{M}^{(3)}caligraphic_M start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT. Instead, sum rules which involve one power of λksubscript𝜆𝑘\lambda_{k}italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT or bijksubscript𝑏𝑖𝑗𝑘b_{ijk}italic_b start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT contribute to partially cancel parts of the amplitudes that scale slower than s3superscript𝑠3s^{3}italic_s start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT in \mathcal{M}caligraphic_M.In the following, we will employ q(y)=0𝑞𝑦0q(y)=0italic_q ( italic_y ) = 0. In this case, the Liouville operator can be written as

L[f](y)1r(y)dmissingdy[p(y)dfdy].𝐿delimited-[]𝑓𝑦1𝑟𝑦dmissingd𝑦delimited-[]𝑝𝑦d𝑓d𝑦L[f](y)\equiv-\dfrac{1}{r(y)}\dfrac{\text{d}missing}{\text{d}y}\left[p(y)%\dfrac{\text{d}f}{\text{d}y}\right]\,.italic_L [ italic_f ] ( italic_y ) ≡ - divide start_ARG 1 end_ARG start_ARG italic_r ( italic_y ) end_ARG divide start_ARG d roman_missing end_ARG start_ARG d italic_y end_ARG [ italic_p ( italic_y ) divide start_ARG d italic_f end_ARG start_ARG d italic_y end_ARG ] .(2.24)

The linearity of the Liouville operator allows us to write the relation

L[fg]=gL[f]+fL[g]2pr(f)(g).𝐿delimited-[]𝑓𝑔𝑔𝐿delimited-[]𝑓𝑓𝐿delimited-[]𝑔2𝑝𝑟𝑓𝑔L[fg]=gL[f]+fL[g]-2\dfrac{p}{r}(\partial f)(\partial g)\,.italic_L [ italic_f italic_g ] = italic_g italic_L [ italic_f ] + italic_f italic_L [ italic_g ] - 2 divide start_ARG italic_p end_ARG start_ARG italic_r end_ARG ( ∂ italic_f ) ( ∂ italic_g ) .(2.25)

For yψi|y=π=0evaluated-atsubscript𝑦subscript𝜓𝑖𝑦𝜋0\partial_{y}\psi_{i}|_{y=\pi}=0∂ start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT | start_POSTSUBSCRIPT italic_y = italic_π end_POSTSUBSCRIPT = 0 and by means of Eq.(2.22)-(2.24), one can show

k=0ψk(π)λkaijk=ψi(π)ψj(π)(λi+λj),superscriptsubscript𝑘0subscript𝜓𝑘𝜋subscript𝜆𝑘subscript𝑎𝑖𝑗𝑘subscript𝜓𝑖𝜋subscript𝜓𝑗𝜋subscript𝜆𝑖subscript𝜆𝑗\displaystyle\sum\limits_{k=0}^{\infty}\psi_{k}(\pi)\lambda_{k}a_{ijk}=\psi_{i%}(\pi)\psi_{j}(\pi)(\lambda_{i}+\lambda_{j})\,,∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_π ) italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT = italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_π ) italic_ψ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_π ) ( italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + italic_λ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) ,(2.26)
k=0ψk(π)λk2aijk=ψi(π)ψj(π)(λi2+6λiλj+λj2),superscriptsubscript𝑘0subscript𝜓𝑘𝜋superscriptsubscript𝜆𝑘2subscript𝑎𝑖𝑗𝑘subscript𝜓𝑖𝜋subscript𝜓𝑗𝜋superscriptsubscript𝜆𝑖26subscript𝜆𝑖subscript𝜆𝑗superscriptsubscript𝜆𝑗2\displaystyle\sum\limits_{k=0}^{\infty}\psi_{k}(\pi)\lambda_{k}^{2}a_{ijk}=%\psi_{i}(\pi)\psi_{j}(\pi)(\lambda_{i}^{2}+6\lambda_{i}\lambda_{j}+\lambda_{j}%^{2})\,,∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_π ) italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT = italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_π ) italic_ψ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_π ) ( italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 6 italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_λ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT + italic_λ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ,(2.27)

These sum rules generalize the ones in Ref.[10, 18].

Similar sum rules can be obtained for the b𝑏bitalic_b-integrals. In principle, such relations are not strictly speaking needed, as one can use Eq.(2.21) and trade b𝑏bitalic_b- for a𝑎aitalic_a- coefficients. However, we report them here for completeness, as they save some work avoiding the conversion. For example,

k=0ψk(π)bijk=k=0ψk(π)Ωdyp(y)yψiyψjψk=Ωdyp(y)r(y)yψiyψjk=0r(y)ψkψk(π)=Ωdyp(y)r(y)yψiyψjδ(yπ)=p(y)r(y)yψiyψj|y=π=0,superscriptsubscript𝑘0subscript𝜓𝑘𝜋subscript𝑏𝑖𝑗𝑘superscriptsubscript𝑘0subscript𝜓𝑘𝜋subscriptΩd𝑦𝑝𝑦subscript𝑦subscript𝜓𝑖subscript𝑦subscript𝜓𝑗subscript𝜓𝑘subscriptΩd𝑦𝑝𝑦𝑟𝑦subscript𝑦subscript𝜓𝑖subscript𝑦subscript𝜓𝑗superscriptsubscript𝑘0𝑟𝑦subscript𝜓𝑘subscript𝜓𝑘𝜋subscriptΩd𝑦𝑝𝑦𝑟𝑦subscript𝑦subscript𝜓𝑖subscript𝑦subscript𝜓𝑗𝛿𝑦𝜋evaluated-at𝑝𝑦𝑟𝑦subscript𝑦subscript𝜓𝑖subscript𝑦subscript𝜓𝑗𝑦𝜋0\begin{split}\sum\limits_{k=0}^{\infty}\psi_{k}(\pi)b_{ijk}&=\sum\limits_{k=0}%^{\infty}\psi_{k}(\pi)\int_{\Omega}\text{d}y\ p(y)\partial_{y}\psi_{i}\partial%_{y}\psi_{j}\psi_{k}\\&=\int_{\Omega}\text{d}y\frac{p(y)}{r(y)}\partial_{y}\psi_{i}\partial_{y}\psi_%{j}\sum\limits_{k=0}^{\infty}\ r(y)\psi_{k}\psi_{k}(\pi)\\&=\int_{\Omega}\text{d}y\frac{p(y)}{r(y)}\partial_{y}\psi_{i}\partial_{y}\psi_%{j}\delta(y-\pi)\\&=\left.\frac{p(y)}{r(y)}\partial_{y}\psi_{i}\partial_{y}\psi_{j}\right|_{y=%\pi}=0\,,\end{split}start_ROW start_CELL ∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_π ) italic_b start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT end_CELL start_CELL = ∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_π ) ∫ start_POSTSUBSCRIPT roman_Ω end_POSTSUBSCRIPT d italic_y italic_p ( italic_y ) ∂ start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT italic_ψ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_ψ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL = ∫ start_POSTSUBSCRIPT roman_Ω end_POSTSUBSCRIPT d italic_y divide start_ARG italic_p ( italic_y ) end_ARG start_ARG italic_r ( italic_y ) end_ARG ∂ start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT italic_ψ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_r ( italic_y ) italic_ψ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_ψ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_π ) end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL = ∫ start_POSTSUBSCRIPT roman_Ω end_POSTSUBSCRIPT d italic_y divide start_ARG italic_p ( italic_y ) end_ARG start_ARG italic_r ( italic_y ) end_ARG ∂ start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT italic_ψ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_δ ( italic_y - italic_π ) end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL = divide start_ARG italic_p ( italic_y ) end_ARG start_ARG italic_r ( italic_y ) end_ARG ∂ start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT italic_ψ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT | start_POSTSUBSCRIPT italic_y = italic_π end_POSTSUBSCRIPT = 0 , end_CELL end_ROW(2.28)

where we have used the fact that r(y)0𝑟𝑦0r(y)\neq 0italic_r ( italic_y ) ≠ 0 and the boundary condition yψi(y)|y=π=0evaluated-atsubscript𝑦subscript𝜓𝑖𝑦𝑦𝜋0\partial_{y}\psi_{i}(y)|_{y=\pi}=0∂ start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_y ) | start_POSTSUBSCRIPT italic_y = italic_π end_POSTSUBSCRIPT = 0.Finally, through Eq.(2.20), multiplying both sides by appropriate ψ(π)𝜓𝜋\psi(\pi)italic_ψ ( italic_π )s and summing it over the appropriate indices, it can be proved that

k=0ψk(π)bkij=λiψi(π)ψj(π).superscriptsubscript𝑘0subscript𝜓𝑘𝜋subscript𝑏𝑘𝑖𝑗subscript𝜆𝑖subscript𝜓𝑖𝜋subscript𝜓𝑗𝜋\displaystyle\sum\limits_{k=0}^{\infty}\psi_{k}(\pi)b_{kij}=\lambda_{i}\psi_{i%}(\pi)\psi_{j}(\pi)\,.∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_π ) italic_b start_POSTSUBSCRIPT italic_k italic_i italic_j end_POSTSUBSCRIPT = italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_π ) italic_ψ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_π ) .(2.29)

Explicit verification of these sum rules can be found in App.A for LED and in Ref.[10] for the large μ𝜇\muitalic_μ limit of RS.

III Physics Applications

The equation of motion for the y𝑦yitalic_y-component of the gravitons shown in Eq.(2.5) can be matched to the SL equation with

p(y)=e3(l+1)k|y|,𝑝𝑦superscript𝑒3𝑙1𝑘𝑦\displaystyle p(y)=e^{-3(l+1)k|y|}\,,italic_p ( italic_y ) = italic_e start_POSTSUPERSCRIPT - 3 ( italic_l + 1 ) italic_k | italic_y | end_POSTSUPERSCRIPT ,q(y)=0,𝑞𝑦0\displaystyle q(y)=0\,,italic_q ( italic_y ) = 0 ,
r(y)=e3(l1)k|y|,𝑟𝑦superscript𝑒3𝑙1𝑘𝑦\displaystyle r(y)=e^{3(l-1)k|y|}\,,italic_r ( italic_y ) = italic_e start_POSTSUPERSCRIPT 3 ( italic_l - 1 ) italic_k | italic_y | end_POSTSUPERSCRIPT ,λn=mn2.subscript𝜆𝑛superscriptsubscript𝑚𝑛2\displaystyle\lambda_{n}=m_{n}^{2}\,.italic_λ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_m start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT .(3.1)

Matching to the boundary conditions of the orbifold symmetry, the SL problem is defined by vanishing derivatives on the boundary, i.e.

ψi(0)=ψi(π)=0,subscript𝜓𝑖0subscript𝜓𝑖𝜋0\partial\psi_{i}(0)=\partial\psi_{i}(\pi)=0\,,∂ italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( 0 ) = ∂ italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_π ) = 0 ,(3.2)

which makes it regular according to the definition of Eq.(2.7).

The a𝑎aitalic_a- and b𝑏bitalic_b-coefficients enter the effective Lagrangian of the massive gravitons stemming from EH action, which can be decomposed as

ij(aijOij(h2)+bijOij(h2))+ijk(aijkOijk(h3)+bijkOijk(h3))+,subscript𝑖𝑗subscript𝑎𝑖𝑗subscript𝑂𝑖𝑗superscript2subscript𝑏𝑖𝑗subscriptsuperscript𝑂𝑖𝑗superscript2subscript𝑖𝑗𝑘subscript𝑎𝑖𝑗𝑘subscript𝑂𝑖𝑗𝑘superscript3subscript𝑏𝑖𝑗𝑘subscriptsuperscript𝑂𝑖𝑗𝑘superscript3\begin{split}\mathcal{L}\supset&\,\sum\limits_{ij}\left(a_{ij}O_{ij}(h^{2})+b_%{ij}O^{\prime}_{ij}(h^{2})\right)\\&+\sum\limits_{ijk}\left(a_{ijk}O_{ijk}(h^{3})+b_{ijk}O^{\prime}_{ijk}(h^{3})%\right)+\dots\,,\end{split}start_ROW start_CELL caligraphic_L ⊃ end_CELL start_CELL ∑ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT italic_O start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ( italic_h start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) + italic_b start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT italic_O start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ( italic_h start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ) end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL + ∑ start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT italic_O start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT ( italic_h start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ) + italic_b start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT italic_O start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT ( italic_h start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ) ) + … , end_CELL end_ROW(3.3)

where Oij(hn)subscript𝑂𝑖𝑗superscript𝑛O_{ij\dots}(h^{n})italic_O start_POSTSUBSCRIPT italic_i italic_j … end_POSTSUBSCRIPT ( italic_h start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) is a an operator which involves n𝑛nitalic_n-powers of the field hhitalic_h with indices (i,j,)𝑖𝑗(i,j,\dots)( italic_i , italic_j , … ). The superscript indicates that the operator originally contained two y𝑦yitalic_y-derivatives that have been absorbed in the definition of the corresponding b𝑏bitalic_b-coefficient (cfr.Eq.(2.16)).The normalization of the 5D wave functions discussed in the previous section is such that the O()(h2)O^{(^{\prime})}(h^{2})italic_O start_POSTSUPERSCRIPT ( start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) end_POSTSUPERSCRIPT ( italic_h start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) part of the Lagrangian reproduces the Fierz-Pauli Lagrangian for a tower of massive gravitons[1].The explicit expansion up to 𝒪(h4)𝒪superscript4\mathcal{O}(h^{4})caligraphic_O ( italic_h start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ) can be found e.g. in Ref.s[8, 10].Regarding the matter content, we can consider a toy model with a scalar field such that

Sy=πd4xg(12gμνμϕνϕ12mϕ2ϕ2).subscript𝑦𝜋superscriptd4𝑥𝑔12superscript𝑔𝜇𝜈subscript𝜇italic-ϕsubscript𝜈italic-ϕ12superscriptsubscript𝑚italic-ϕ2superscriptitalic-ϕ2𝑆S\supset\int_{y=\pi}\text{d}^{4}x\sqrt{-g}\left(\dfrac{1}{2}g^{\mu\nu}\partial%_{\mu}\phi\partial_{\nu}\phi-\dfrac{1}{2}m_{\phi}^{2}\phi^{2}\right)\,.italic_S ⊃ ∫ start_POSTSUBSCRIPT italic_y = italic_π end_POSTSUBSCRIPT d start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_x square-root start_ARG - italic_g end_ARG ( divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_g start_POSTSUPERSCRIPT italic_μ italic_ν end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT italic_ϕ ∂ start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT italic_ϕ - divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_m start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) .(3.4)

The conclusions do not depend on the matter content as long as it is localized on the brane.

Before moving forward, it is important to notice that LED, RS, and Clockwork share important features.To make it more manifest, we move to conformal coordinates, z𝑧zitalic_z, defined such that the metric of Eq.(2.4) becomes conformally flat

dy=A3ldz,ds2=A(z)2(ημνdxμdxνdz2),formulae-sequenced𝑦superscript𝐴3𝑙d𝑧dsuperscript𝑠2𝐴superscript𝑧2subscript𝜂𝜇𝜈dsuperscript𝑥𝜇dsuperscript𝑥𝜈dsuperscript𝑧2\text{d}y=A^{3l}\text{d}z\,,\qquad\text{d}s^{2}=A(z)^{2}\left(\eta_{\mu\nu}%\text{d}x^{\mu}\text{d}x^{\nu}-\text{d}z^{2}\right)\,,d italic_y = italic_A start_POSTSUPERSCRIPT 3 italic_l end_POSTSUPERSCRIPT d italic_z , d italic_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_A ( italic_z ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT d italic_x start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT d italic_x start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT - d italic_z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ,(3.5)

whereA(y)ek|y|𝐴𝑦superscript𝑒𝑘𝑦A(y)\equiv e^{-k|y|}italic_A ( italic_y ) ≡ italic_e start_POSTSUPERSCRIPT - italic_k | italic_y | end_POSTSUPERSCRIPT.In such coordinates, the SL equation is determined by the functions

r(z)=p(z)=A3,q(z)=0.r(z)=p(z)=A^{3}\quad,\quad q(z)=0\,.italic_r ( italic_z ) = italic_p ( italic_z ) = italic_A start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT , italic_q ( italic_z ) = 0 .(3.6)

As formally there is no l𝑙litalic_l-dependent term in these coordinates, it shows that all these models are conformally flat and equivalent, and hence characterized by the same structure of gravitons interactions in the 4D EFT. Furthermore, as the couplings stemming from integrating out the 5th dimension formally follow the same equations, they obey the same sum rules.

We now exemplify the applications in the RS model by demonstrating that the higher s𝑠sitalic_s powers of the amplitude vanish after the sum rules are applied. Here we draw on the results of Ref.[10].It turns out that the leading term in the amplitude is (3)superscript3\mathcal{M}^{(3)}caligraphic_M start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT and depends solely on graviton interactions.Such amplitude is given by

(3)=isin2(θ)24M53λiλj(k=0ψk(π)aijkψi(π)ψj(π)).superscript3𝑖superscript2𝜃24superscriptsubscript𝑀53subscript𝜆𝑖subscript𝜆𝑗superscriptsubscript𝑘0subscript𝜓𝑘𝜋subscript𝑎𝑖𝑗𝑘subscript𝜓𝑖𝜋subscript𝜓𝑗𝜋\mathcal{M}^{(3)}=-\frac{i\sin^{2}(\theta)}{24M_{5}^{3}\lambda_{i}\lambda_{j}}%\left(\sum\limits_{k=0}^{\infty}\psi_{k}(\pi)a_{ijk}-\psi_{i}(\pi)\psi_{j}(\pi%)\right)\,.caligraphic_M start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT = - divide start_ARG italic_i roman_sin start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_θ ) end_ARG start_ARG 24 italic_M start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_λ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT end_ARG ( ∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_π ) italic_a start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT - italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_π ) italic_ψ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_π ) ) .(3.7)

As can be seen, by means of Eq.(2.23) this contribution vanishes. Cancellation of the contributions to the amplitudes that scale slower than s3superscript𝑠3s^{3}italic_s start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT involves at least one power of λk,bijksubscript𝜆𝑘subscript𝑏𝑖𝑗𝑘\lambda_{k},b_{ijk}italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_b start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT and/or the scalar mode of the metric, the radion.The former sum rules are relevant to cancelling manyterms of the amplitude both at (2)superscript2\mathcal{M}^{(2)}caligraphic_M start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT and (3/2)superscript32\mathcal{M}^{(3/2)}caligraphic_M start_POSTSUPERSCRIPT ( 3 / 2 ) end_POSTSUPERSCRIPT which are proportional to

(2),(3/2)(k=0ψk(π)λkaijkψi(π)ψj(π)(λi+λj)).proportional-tosuperscript232superscriptsubscript𝑘0subscript𝜓𝑘𝜋subscript𝜆𝑘subscript𝑎𝑖𝑗𝑘subscript𝜓𝑖𝜋subscript𝜓𝑗𝜋subscript𝜆𝑖subscript𝜆𝑗\mathcal{M}^{(2),(3/2)}\propto\left(\sum\limits_{k=0}^{\infty}\psi_{k}(\pi)%\lambda_{k}a_{ijk}-\psi_{i}(\pi)\psi_{j}(\pi)(\lambda_{i}+\lambda_{j})\right)\,.caligraphic_M start_POSTSUPERSCRIPT ( 2 ) , ( 3 / 2 ) end_POSTSUPERSCRIPT ∝ ( ∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_π ) italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT - italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_π ) italic_ψ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_π ) ( italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + italic_λ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) ) .(3.8)

They vanish due to Eq.(2.26).Instead, the latter ones, which include the radion must be treated differently as the radion wave function and its normalization are not generated directly by the same SL equation of the gravitons.As the treatment of the radion cannot be done in full generality as we did for the graviton, we show the amplitudes and the sum rules that cure them in the following section for the RS model.

IV RS Radion Sum Rules beyond the large-μ𝜇\muitalic_μ limit

We supplement the linear sum rules presented the previous section with two additional sum rules that involve the radion in the RS model. These are needed to cancel all contributions to the amplitude that grow faster than s𝑠sitalic_s, as shown for the scattering of KK-gravitons both in unstabilized and stabilized models[27, 11]. The missing contribution corresponds to the diagram in Fig.2(a). We showed this previously in Ref.[10] for the limiting case μkR1𝜇𝑘𝑅much-greater-than1\mu\equiv kR\gg 1italic_μ ≡ italic_k italic_R ≫ 1. The proof was built on the explicit solutions of the SL equation in this limit. The following discussion generalizes this to any value of μ𝜇\muitalic_μ. Analogous results were published simultaneously to this paper in Ref.[12].

We work in the so-called unitary gauge, i.e. in coordinates in which only the tensorial and scalar excitations of the metric are physical.Similar techniques can be employed also for different theories.

The couplings involving the radion are special as they do not depend on the SL functions, ψisubscript𝜓𝑖\psi_{i}italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT. Their impact in the 4D effective couplings shows up by adding extra powers of ek|y|superscript𝑒𝑘𝑦e^{-k|y|}italic_e start_POSTSUPERSCRIPT - italic_k | italic_y | end_POSTSUPERSCRIPT in the n-points integrals of the gravitons. Even though this seems to eliminate the precious insights given to us by the SL theory, a geometric underlying connection inherited by the original 5D theory is still present.We will work in conformal coordinates, z(y)𝑧𝑦z(y)italic_z ( italic_y ), as defined in Eq.(3.5).In such coordinates the difference in the definitions between a a𝑎aitalic_a and b𝑏bitalic_b coefficients is merely given by the presence of the two derivatives zsubscript𝑧\partial_{z}∂ start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT in the b𝑏bitalic_b-one, while they have the same powers of A(z)𝐴𝑧A(z)italic_A ( italic_z ).

In conformal coordinates, for every radion in the expansion, a factor of A2superscript𝐴2A^{-2}italic_A start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT comes along. Therefore we define the couplings with the radion as

ψr2ΩdzA(z)11,superscriptsubscript𝜓𝑟2subscriptΩd𝑧𝐴superscript𝑧11\displaystyle\psi_{r}^{2}\int_{\Omega}\text{d}z\,\,A(z)^{-1}\equiv 1\,,italic_ψ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT roman_Ω end_POSTSUBSCRIPT d italic_z italic_A ( italic_z ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ≡ 1 ,(4.1)
bijrψrΩdzA(z)zψizψj,subscript𝑏𝑖𝑗𝑟subscript𝜓𝑟subscriptΩd𝑧𝐴𝑧subscript𝑧subscript𝜓𝑖subscript𝑧subscript𝜓𝑗\displaystyle b_{ijr}\equiv\psi_{r}\int_{\Omega}\text{d}z\,\,A(z)\partial_{z}%\psi_{i}\partial_{z}\psi_{j}\ \,,italic_b start_POSTSUBSCRIPT italic_i italic_j italic_r end_POSTSUBSCRIPT ≡ italic_ψ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ∫ start_POSTSUBSCRIPT roman_Ω end_POSTSUBSCRIPT d italic_z italic_A ( italic_z ) ∂ start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT italic_ψ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ,(4.2)
airrψr2ΩdzA(z)1ψi.subscript𝑎𝑖𝑟𝑟superscriptsubscript𝜓𝑟2subscriptΩd𝑧𝐴superscript𝑧1subscript𝜓𝑖\displaystyle a_{irr}\equiv\psi_{r}^{2}\int_{\Omega}\text{d}z\,\,A(z)^{-1}\psi%_{i}\,.italic_a start_POSTSUBSCRIPT italic_i italic_r italic_r end_POSTSUBSCRIPT ≡ italic_ψ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT roman_Ω end_POSTSUBSCRIPT d italic_z italic_A ( italic_z ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT .(4.3)

With a slight abuse of notation, we write ψn(π)subscript𝜓𝑛𝜋\psi_{n}(\pi)italic_ψ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_π ) or z=π𝑧𝜋z=\piitalic_z = italic_π in the integrals, which have to be understood as z=πz(y=π)𝑧𝜋similar-to𝑧𝑦𝜋z=\pi\sim z(y=\pi)italic_z = italic_π ∼ italic_z ( italic_y = italic_π ).

Gravity-Matter Sum Rules in models with a single extra-dimension (2)
Gravity-Matter Sum Rules in models with a single extra-dimension (3)

After imposing the graviton sum rules already derived, the non-vanishing amplitude at order (2)superscript2\mathcal{M}^{(2)}caligraphic_M start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT reads

(2)=is236M53λiλj[k=1ψk(π)λkaijk(λiλj)2(λi+λj)[ψi(π)ψj(π)+ψ02δij]+6ψrbijr].superscript2𝑖superscript𝑠236superscriptsubscript𝑀53subscript𝜆𝑖subscript𝜆𝑗delimited-[]superscriptsubscript𝑘1subscript𝜓𝑘𝜋subscript𝜆𝑘subscript𝑎𝑖𝑗𝑘superscriptsubscript𝜆𝑖subscript𝜆𝑗2subscript𝜆𝑖subscript𝜆𝑗delimited-[]subscript𝜓𝑖𝜋subscript𝜓𝑗𝜋superscriptsubscript𝜓02subscript𝛿𝑖𝑗6subscript𝜓𝑟subscript𝑏𝑖𝑗𝑟\begin{split}\mathcal{M}^{(2)}=-\frac{is^{2}}{36M_{5}^{3}\lambda_{i}\lambda_{j%}}&\left[\sum_{k=1}^{\infty}\dfrac{\psi_{k}(\pi)}{\lambda_{k}}a_{ijk}-\left(%\lambda_{i}-\lambda_{j}\right)^{2}(\lambda_{i}+\lambda_{j})\left[\psi_{i}(\pi)%\psi_{j}(\pi)+\psi_{0}^{2}\delta_{ij}\right]+6\psi_{r}b_{ijr}\right]\,.\end{split}start_ROW start_CELL caligraphic_M start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT = - divide start_ARG italic_i italic_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 36 italic_M start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_λ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT end_ARG end_CELL start_CELL [ ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT divide start_ARG italic_ψ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_π ) end_ARG start_ARG italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_ARG italic_a start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT - ( italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - italic_λ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + italic_λ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) [ italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_π ) italic_ψ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_π ) + italic_ψ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_δ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ] + 6 italic_ψ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_b start_POSTSUBSCRIPT italic_i italic_j italic_r end_POSTSUBSCRIPT ] . end_CELL end_ROW(4.4)

At order (3/2)superscript32\mathcal{M}^{(3/2)}caligraphic_M start_POSTSUPERSCRIPT ( 3 / 2 ) end_POSTSUPERSCRIPT the amplitudes vanish employing the graviton sum rules, leaving the final amplitude of order (1)superscript1\mathcal{M}^{(1)}caligraphic_M start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT.Finally, we consider matter annihilation into a massive graviton and a radion, ϕϕhiritalic-ϕitalic-ϕsubscript𝑖𝑟\phi\phi\to h_{i}ritalic_ϕ italic_ϕ → italic_h start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_r. The corresponding diagrams are shown in Fig.2(b). The leading amplitude is of order (2)superscript2\mathcal{M}^{(2)}caligraphic_M start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT and reads

(2)=is224M53λi(k=1ψk(π)bikrλk+ψrairrAπ2ψrψi(π)),superscript2𝑖superscript𝑠224superscriptsubscript𝑀53subscript𝜆𝑖superscriptsubscript𝑘1subscript𝜓𝑘𝜋subscript𝑏𝑖𝑘𝑟subscript𝜆𝑘subscript𝜓𝑟subscript𝑎𝑖𝑟𝑟superscriptsubscript𝐴𝜋2subscript𝜓𝑟subscript𝜓𝑖𝜋\mathcal{M}^{(2)}=\dfrac{is^{2}}{24M_{5}^{3}\lambda_{i}}\left(\sum\limits_{k=1%}^{\infty}\psi_{k}(\pi)\frac{b_{ikr}}{\lambda_{k}}+\psi_{r}a_{irr}-A_{\pi}^{-2%}\psi_{r}\psi_{i}(\pi)\right)\,,caligraphic_M start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT = divide start_ARG italic_i italic_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 24 italic_M start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG ( ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_π ) divide start_ARG italic_b start_POSTSUBSCRIPT italic_i italic_k italic_r end_POSTSUBSCRIPT end_ARG start_ARG italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_ARG + italic_ψ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_i italic_r italic_r end_POSTSUBSCRIPT - italic_A start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_π ) ) ,(4.5)

To cancel these contributions two additional sum rules are required.

The starting point for their proof is the identity

A(π)α3f(π)=n=0ψn(π)(ΩdzA(z)αψn(z)f(z)).𝐴superscript𝜋𝛼3𝑓𝜋superscriptsubscript𝑛0subscript𝜓𝑛𝜋subscriptΩd𝑧𝐴superscript𝑧𝛼subscript𝜓𝑛𝑧𝑓𝑧A(\pi)^{\alpha-3}f(\pi)=\sum\limits_{n=0}^{\infty}\psi_{n}(\pi)\left(\int_{%\Omega}\text{d}z\,A(z)^{\alpha}\psi_{n}(z)f(z)\right)\,.italic_A ( italic_π ) start_POSTSUPERSCRIPT italic_α - 3 end_POSTSUPERSCRIPT italic_f ( italic_π ) = ∑ start_POSTSUBSCRIPT italic_n = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_π ) ( ∫ start_POSTSUBSCRIPT roman_Ω end_POSTSUBSCRIPT d italic_z italic_A ( italic_z ) start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_z ) italic_f ( italic_z ) ) .(4.6)

Through the SL equation and integrating by parts, we can write the above expression as

A(π)α3f(π)=ψ02(ΩdzA(z)αf(z))+n=1ψn(π)λn(ΩdzA(z)3ψn(z)(Aα3f(z))).𝐴superscript𝜋𝛼3𝑓𝜋superscriptsubscript𝜓02subscriptΩd𝑧𝐴superscript𝑧𝛼𝑓𝑧superscriptsubscript𝑛1subscript𝜓𝑛𝜋subscript𝜆𝑛subscriptΩd𝑧𝐴superscript𝑧3subscript𝜓𝑛𝑧superscript𝐴𝛼3𝑓𝑧\begin{split}&A(\pi)^{\alpha-3}f(\pi)=\psi_{0}^{2}\left(\int_{\Omega}\text{d}z%\,A(z)^{\alpha}f(z)\right)\\&+\sum\limits_{n=1}^{\infty}\dfrac{\psi_{n}(\pi)}{\lambda_{n}}\left(\int_{%\Omega}\text{d}z\,A(z)^{3}\partial\psi_{n}(z)\partial\left(A^{\alpha-3}f(z)%\right)\right)\,.\end{split}start_ROW start_CELL end_CELL start_CELL italic_A ( italic_π ) start_POSTSUPERSCRIPT italic_α - 3 end_POSTSUPERSCRIPT italic_f ( italic_π ) = italic_ψ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( ∫ start_POSTSUBSCRIPT roman_Ω end_POSTSUBSCRIPT d italic_z italic_A ( italic_z ) start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT italic_f ( italic_z ) ) end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL + ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT divide start_ARG italic_ψ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_π ) end_ARG start_ARG italic_λ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_ARG ( ∫ start_POSTSUBSCRIPT roman_Ω end_POSTSUBSCRIPT d italic_z italic_A ( italic_z ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ∂ italic_ψ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_z ) ∂ ( italic_A start_POSTSUPERSCRIPT italic_α - 3 end_POSTSUPERSCRIPT italic_f ( italic_z ) ) ) . end_CELL end_ROW(4.7)

Now we choose

f(z)=A(z)3απzdzAβ3g(z),𝑓𝑧𝐴superscript𝑧3𝛼superscriptsubscript𝜋𝑧dsuperscript𝑧superscript𝐴𝛽3𝑔superscript𝑧f(z)=A(z)^{3-\alpha}\int\limits_{\pi}^{z}\text{d}z^{\prime}A^{\beta-3}g(z^{%\prime})\,,italic_f ( italic_z ) = italic_A ( italic_z ) start_POSTSUPERSCRIPT 3 - italic_α end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT d italic_z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT italic_β - 3 end_POSTSUPERSCRIPT italic_g ( italic_z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ,(4.8)

such that we obtain the result of interest:

n=1ψn(π)λn(ΩdzA(z)βψn(z)g(z))=ψ02(ΩdzA(z)3πzdzAβ3g(z)).superscriptsubscript𝑛1subscript𝜓𝑛𝜋subscript𝜆𝑛subscriptΩd𝑧𝐴superscript𝑧𝛽subscript𝜓𝑛𝑧𝑔𝑧superscriptsubscript𝜓02subscriptΩd𝑧𝐴superscript𝑧3superscriptsubscript𝜋𝑧dsuperscript𝑧superscript𝐴𝛽3𝑔superscript𝑧\begin{split}&\sum\limits_{n=1}^{\infty}\dfrac{\psi_{n}(\pi)}{\lambda_{n}}%\left(\int_{\Omega}\text{d}z\,A(z)^{\beta}\partial\psi_{n}(z)g(z)\right)\\&=-\psi_{0}^{2}\left(\int_{\Omega}\text{d}z\,A(z)^{3}\int\limits_{\pi}^{z}%\text{d}z^{\prime}A^{\beta-3}g(z^{\prime})\right)\,.\end{split}start_ROW start_CELL end_CELL start_CELL ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT divide start_ARG italic_ψ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_π ) end_ARG start_ARG italic_λ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_ARG ( ∫ start_POSTSUBSCRIPT roman_Ω end_POSTSUBSCRIPT d italic_z italic_A ( italic_z ) start_POSTSUPERSCRIPT italic_β end_POSTSUPERSCRIPT ∂ italic_ψ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_z ) italic_g ( italic_z ) ) end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL = - italic_ψ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( ∫ start_POSTSUBSCRIPT roman_Ω end_POSTSUBSCRIPT d italic_z italic_A ( italic_z ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT d italic_z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT italic_β - 3 end_POSTSUPERSCRIPT italic_g ( italic_z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ) . end_CELL end_ROW(4.9)

This will be a key ingredient to proving the two sum rules. Its convenience relies upon the possibility of trading the infinite sum with the eigenvalues in the denominator into a double integral.

Sum Rule 1.

We are interested in computing

k=1ψk(π)λkaijk(λiλj)2.superscriptsubscript𝑘1subscript𝜓𝑘𝜋subscript𝜆𝑘subscript𝑎𝑖𝑗𝑘superscriptsubscript𝜆𝑖subscript𝜆𝑗2\sum\limits_{k=1}^{\infty}\dfrac{\psi_{k}(\pi)}{\lambda_{k}}a_{ijk}(\lambda_{i%}-\lambda_{j})^{2}\,.∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT divide start_ARG italic_ψ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_π ) end_ARG start_ARG italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_ARG italic_a start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT ( italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - italic_λ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT .(4.10)

By means of Eq.(4.9), it is convenient to define the following quantity

Sijk=1ψk(π)λkbkij=ψ02ΩdzA3πzψiψj.subscript𝑆𝑖𝑗superscriptsubscript𝑘1subscript𝜓𝑘𝜋subscript𝜆𝑘subscript𝑏𝑘𝑖𝑗superscriptsubscript𝜓02subscriptΩd𝑧superscript𝐴3superscriptsubscript𝜋𝑧subscript𝜓𝑖subscript𝜓𝑗S_{ij}\equiv\sum\limits_{k=1}^{\infty}\dfrac{\psi_{k}(\pi)}{\lambda_{k}}b_{kij%}=-\psi_{0}^{2}\int_{\Omega}\text{d}z\,A^{3}\int\limits_{\pi}^{z}\partial\psi_%{i}\psi_{j}\,.italic_S start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ≡ ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT divide start_ARG italic_ψ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_π ) end_ARG start_ARG italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_ARG italic_b start_POSTSUBSCRIPT italic_k italic_i italic_j end_POSTSUBSCRIPT = - italic_ψ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT roman_Ω end_POSTSUBSCRIPT d italic_z italic_A start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT ∂ italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_ψ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT .(4.11)

Via Eq.(2.21), one proves that the problem is then reduced to

k=1ψk(π)λkaijk(λiλj)2=(SijSji)(λiλj).superscriptsubscript𝑘1subscript𝜓𝑘𝜋subscript𝜆𝑘subscript𝑎𝑖𝑗𝑘superscriptsubscript𝜆𝑖subscript𝜆𝑗2subscript𝑆𝑖𝑗subscript𝑆𝑗𝑖subscript𝜆𝑖subscript𝜆𝑗\sum\limits_{k=1}^{\infty}\dfrac{\psi_{k}(\pi)}{\lambda_{k}}a_{ijk}(\lambda_{i%}-\lambda_{j})^{2}=(S_{ij}-S_{ji})(\lambda_{i}-\lambda_{j})\,.∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT divide start_ARG italic_ψ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_π ) end_ARG start_ARG italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_ARG italic_a start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT ( italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - italic_λ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = ( italic_S start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT - italic_S start_POSTSUBSCRIPT italic_j italic_i end_POSTSUBSCRIPT ) ( italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - italic_λ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) .(4.12)

The strategy is to prove two independent relations for Sijsubscript𝑆𝑖𝑗S_{ij}italic_S start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT and to solve for the latter.The first relation can be obtained pretty straightforwardly

Sij+Sji=ψi(π)ψj(π)ψ02δij.subscript𝑆𝑖𝑗subscript𝑆𝑗𝑖subscript𝜓𝑖𝜋subscript𝜓𝑗𝜋superscriptsubscript𝜓02subscript𝛿𝑖𝑗S_{ij}+S_{ji}=\psi_{i}(\pi)\psi_{j}(\pi)-\psi_{0}^{2}\delta_{ij}\,.italic_S start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT + italic_S start_POSTSUBSCRIPT italic_j italic_i end_POSTSUBSCRIPT = italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_π ) italic_ψ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_π ) - italic_ψ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_δ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT .(4.13)

The second one requires some work. Similarly to the approach used in Ref.[10], we consider

λjSij+λiSji=ψ02[λiδij+6ΩdzA3πzdzA1(A)ψiψj]subscript𝜆𝑗subscript𝑆𝑖𝑗subscript𝜆𝑖subscript𝑆𝑗𝑖superscriptsubscript𝜓02delimited-[]subscript𝜆𝑖subscript𝛿𝑖𝑗6subscriptΩd𝑧superscript𝐴3superscriptsubscript𝜋𝑧dsuperscript𝑧superscript𝐴1𝐴subscript𝜓𝑖subscript𝜓𝑗\begin{split}&\lambda_{j}S_{ij}+\lambda_{i}S_{ji}\\&=\psi_{0}^{2}\left[\lambda_{i}\delta_{ij}+6\int_{\Omega}\text{d}z\,A^{3}\int%\limits_{\pi}^{z}\text{d}z^{\prime}A^{-1}\partial(A)\partial\psi_{i}\partial%\psi_{j}\right]\end{split}start_ROW start_CELL end_CELL start_CELL italic_λ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT + italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT italic_j italic_i end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL = italic_ψ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT [ italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_δ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT + 6 ∫ start_POSTSUBSCRIPT roman_Ω end_POSTSUBSCRIPT d italic_z italic_A start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT d italic_z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ∂ ( italic_A ) ∂ italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∂ italic_ψ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ] end_CELL end_ROW(4.14)

Given that dyAdzd𝑦𝐴d𝑧\text{d}y\equiv A\text{d}zd italic_y ≡ italic_A d italic_z, it follows that333This is the point where the value of l𝑙litalic_l would have entered the discussion if we kept it unspecified.

z(A)=Ay(eμy)=μA2.subscript𝑧𝐴𝐴subscript𝑦superscript𝑒𝜇𝑦𝜇superscript𝐴2\partial_{z}(A)=A\partial_{y}(e^{-\mu y})=-\mu A^{2}\,.∂ start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT ( italic_A ) = italic_A ∂ start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT ( italic_e start_POSTSUPERSCRIPT - italic_μ italic_y end_POSTSUPERSCRIPT ) = - italic_μ italic_A start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT .(4.15)

Let us denote for simplicity AπA(π)subscript𝐴𝜋𝐴𝜋A_{\pi}\equiv A(\pi)italic_A start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT ≡ italic_A ( italic_π ) and consider

ΩdzAβψiψj=ΩdzAα+βπzAαψiψj=Aπα+βΩdzAαψiψj(α+β)ΩdzAα+β1(A)πzAαψiψj=Aπα+βΩdzAαψiψj+μ(α+β)ΩdzAα+β+1πzAαψiψj,subscriptΩd𝑧superscript𝐴𝛽subscript𝜓𝑖subscript𝜓𝑗subscriptΩd𝑧superscript𝐴𝛼𝛽superscriptsubscript𝜋𝑧superscript𝐴𝛼subscript𝜓𝑖subscript𝜓𝑗superscriptsubscript𝐴𝜋𝛼𝛽subscriptΩd𝑧superscript𝐴𝛼subscript𝜓𝑖subscript𝜓𝑗𝛼𝛽subscriptΩd𝑧superscript𝐴𝛼𝛽1𝐴superscriptsubscript𝜋𝑧superscript𝐴𝛼subscript𝜓𝑖subscript𝜓𝑗superscriptsubscript𝐴𝜋𝛼𝛽subscriptΩd𝑧superscript𝐴𝛼subscript𝜓𝑖subscript𝜓𝑗𝜇𝛼𝛽subscriptΩd𝑧superscript𝐴𝛼𝛽1superscriptsubscript𝜋𝑧superscript𝐴𝛼subscript𝜓𝑖subscript𝜓𝑗\begin{split}\int_{\Omega}\text{d}z\,A^{\beta}\partial\psi_{i}\partial\psi_{j}%&=\int_{\Omega}\text{d}z\,A^{\alpha+\beta}\partial\int\limits_{\pi}^{z}A^{-%\alpha}\partial\psi_{i}\partial\psi_{j}=A_{\pi}^{\alpha+\beta}\int_{\Omega}%\text{d}z\,A^{-\alpha}\partial\psi_{i}\partial\psi_{j}-(\alpha+\beta)\int_{%\Omega}\text{d}z\,A^{\alpha+\beta-1}\partial(A)\int\limits_{\pi}^{z}A^{-\alpha%}\partial\psi_{i}\partial\psi_{j}\\&=A_{\pi}^{\alpha+\beta}\int_{\Omega}\text{d}z\,A^{-\alpha}\partial\psi_{i}%\partial\psi_{j}+\mu(\alpha+\beta)\int_{\Omega}\text{d}z\,A^{\alpha+\beta+1}%\int\limits_{\pi}^{z}A^{-\alpha}\partial\psi_{i}\partial\psi_{j}\,,\end{split}start_ROW start_CELL ∫ start_POSTSUBSCRIPT roman_Ω end_POSTSUBSCRIPT d italic_z italic_A start_POSTSUPERSCRIPT italic_β end_POSTSUPERSCRIPT ∂ italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∂ italic_ψ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT end_CELL start_CELL = ∫ start_POSTSUBSCRIPT roman_Ω end_POSTSUBSCRIPT d italic_z italic_A start_POSTSUPERSCRIPT italic_α + italic_β end_POSTSUPERSCRIPT ∂ ∫ start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT - italic_α end_POSTSUPERSCRIPT ∂ italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∂ italic_ψ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT = italic_A start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_α + italic_β end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT roman_Ω end_POSTSUBSCRIPT d italic_z italic_A start_POSTSUPERSCRIPT - italic_α end_POSTSUPERSCRIPT ∂ italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∂ italic_ψ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT - ( italic_α + italic_β ) ∫ start_POSTSUBSCRIPT roman_Ω end_POSTSUBSCRIPT d italic_z italic_A start_POSTSUPERSCRIPT italic_α + italic_β - 1 end_POSTSUPERSCRIPT ∂ ( italic_A ) ∫ start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT - italic_α end_POSTSUPERSCRIPT ∂ italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∂ italic_ψ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL = italic_A start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_α + italic_β end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT roman_Ω end_POSTSUBSCRIPT d italic_z italic_A start_POSTSUPERSCRIPT - italic_α end_POSTSUPERSCRIPT ∂ italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∂ italic_ψ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT + italic_μ ( italic_α + italic_β ) ∫ start_POSTSUBSCRIPT roman_Ω end_POSTSUBSCRIPT d italic_z italic_A start_POSTSUPERSCRIPT italic_α + italic_β + 1 end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT - italic_α end_POSTSUPERSCRIPT ∂ italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∂ italic_ψ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , end_CELL end_ROW(4.16)

where we have also used that A(π)=A(π).𝐴𝜋𝐴𝜋A(-\pi)=A(\pi).italic_A ( - italic_π ) = italic_A ( italic_π ) .We choose α=1𝛼1\alpha=-1italic_α = - 1 and β=3𝛽3\beta=3italic_β = 3 to find

λiδij=Aπ2ΩdzAψiψj+2μΩdzA3πzAψiψj,=Aπ2ΩdzAψiψj2ΩdzA3πzA1(A)ψiψj.\begin{split}&\lambda_{i}\delta_{ij}=A_{\pi}^{2}\int_{\Omega}\text{d}z\,A%\partial\psi_{i}\partial\psi_{j}+2\mu\int_{\Omega}\text{d}z\,A^{3}\int\limits_%{\pi}^{z}A\partial\psi_{i}\partial\psi_{j}\,,\\&\,=A_{\pi}^{2}\int_{\Omega}\text{d}z\,A\partial\psi_{i}\partial\psi_{j}-2\int%_{\Omega}\text{d}z\,A^{3}\int\limits_{\pi}^{z}A^{-1}\partial(A)\partial\psi_{i%}\partial\psi_{j}\,.\end{split}start_ROW start_CELL end_CELL start_CELL italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_δ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT = italic_A start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT roman_Ω end_POSTSUBSCRIPT d italic_z italic_A ∂ italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∂ italic_ψ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT + 2 italic_μ ∫ start_POSTSUBSCRIPT roman_Ω end_POSTSUBSCRIPT d italic_z italic_A start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT italic_A ∂ italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∂ italic_ψ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL = italic_A start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT roman_Ω end_POSTSUBSCRIPT d italic_z italic_A ∂ italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∂ italic_ψ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT - 2 ∫ start_POSTSUBSCRIPT roman_Ω end_POSTSUBSCRIPT d italic_z italic_A start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ∂ ( italic_A ) ∂ italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∂ italic_ψ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT . end_CELL end_ROW(4.17)

We shuffle the terms to write the main result of interest

2ΩdzA3πzA1(A)ψiψj=λiδij+Aπ2ΩdzAψiψj.2subscriptΩd𝑧superscript𝐴3superscriptsubscript𝜋𝑧superscript𝐴1𝐴subscript𝜓𝑖subscript𝜓𝑗subscript𝜆𝑖subscript𝛿𝑖𝑗superscriptsubscript𝐴𝜋2subscriptΩd𝑧𝐴subscript𝜓𝑖subscript𝜓𝑗\begin{split}&2\int_{\Omega}\text{d}z\,A^{3}\int\limits_{\pi}^{z}A^{-1}%\partial(A)\partial\psi_{i}\partial\psi_{j}\\&=-\lambda_{i}\delta_{ij}+A_{\pi}^{2}\int_{\Omega}\text{d}z\,A\partial\psi_{i}%\partial\psi_{j}\,.\end{split}start_ROW start_CELL end_CELL start_CELL 2 ∫ start_POSTSUBSCRIPT roman_Ω end_POSTSUBSCRIPT d italic_z italic_A start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ∂ ( italic_A ) ∂ italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∂ italic_ψ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL = - italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_δ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT + italic_A start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT roman_Ω end_POSTSUBSCRIPT d italic_z italic_A ∂ italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∂ italic_ψ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT . end_CELL end_ROW(4.18)

We recognize the last integral term to be ψr1bijrsuperscriptsubscript𝜓𝑟1subscript𝑏𝑖𝑗𝑟\psi_{r}^{-1}b_{ijr}italic_ψ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_i italic_j italic_r end_POSTSUBSCRIPT.This implies that

λjSij+λiSji=ψ02{3Aπ2ψr1bijr2λiδij}.subscript𝜆𝑗subscript𝑆𝑖𝑗subscript𝜆𝑖subscript𝑆𝑗𝑖superscriptsubscript𝜓023superscriptsubscript𝐴𝜋2superscriptsubscript𝜓𝑟1subscript𝑏𝑖𝑗𝑟2subscript𝜆𝑖subscript𝛿𝑖𝑗\lambda_{j}S_{ij}+\lambda_{i}S_{ji}=\psi_{0}^{2}\left\{3A_{\pi}^{2}\psi_{r}^{-%1}b_{ijr}-2\lambda_{i}\delta_{ij}\right\}\,.italic_λ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT + italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT italic_j italic_i end_POSTSUBSCRIPT = italic_ψ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT { 3 italic_A start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_i italic_j italic_r end_POSTSUBSCRIPT - 2 italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_δ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT } .(4.19)

By combining Eq.s(4.13)-(4.19), we get the desired result

Sij=λi[ψi(π)ψj(π)+ψ02δij]3Aπ2ψr1ψ02bijrλiλj,subscript𝑆𝑖𝑗subscript𝜆𝑖delimited-[]subscript𝜓𝑖𝜋subscript𝜓𝑗𝜋superscriptsubscript𝜓02subscript𝛿𝑖𝑗3superscriptsubscript𝐴𝜋2superscriptsubscript𝜓𝑟1superscriptsubscript𝜓02subscript𝑏𝑖𝑗𝑟subscript𝜆𝑖subscript𝜆𝑗\begin{split}&S_{ij}=\dfrac{\lambda_{i}\left[\psi_{i}(\pi)\psi_{j}(\pi)+\psi_{%0}^{2}\delta_{ij}\right]-3A_{\pi}^{2}\psi_{r}^{-1}\psi_{0}^{2}b_{ijr}}{\lambda%_{i}-\lambda_{j}}\,,\end{split}start_ROW start_CELL end_CELL start_CELL italic_S start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT = divide start_ARG italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT [ italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_π ) italic_ψ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_π ) + italic_ψ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_δ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ] - 3 italic_A start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_i italic_j italic_r end_POSTSUBSCRIPT end_ARG start_ARG italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - italic_λ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT end_ARG , end_CELL end_ROW(4.20)

which finally leads to

k=1ψk(π)λkaijk(λiλj)2=(SijSji)(λiλj),=(λi+λj)[ψi(π)ψj(π)+ψ02δij]6Aπ2ψr1ψ02bijr.\begin{split}&\sum\limits_{k=1}^{\infty}\dfrac{\psi_{k}(\pi)}{\lambda_{k}}a_{%ijk}(\lambda_{i}-\lambda_{j})^{2}=(S_{ij}-S_{ji})(\lambda_{i}-\lambda_{j})\,,%\\&\,=(\lambda_{i}+\lambda_{j})\left[\psi_{i}(\pi)\psi_{j}(\pi)+\psi_{0}^{2}%\delta_{ij}\right]-6A_{\pi}^{2}\psi_{r}^{-1}\psi_{0}^{2}b_{ijr}\,.\end{split}start_ROW start_CELL end_CELL start_CELL ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT divide start_ARG italic_ψ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_π ) end_ARG start_ARG italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_ARG italic_a start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT ( italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - italic_λ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = ( italic_S start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT - italic_S start_POSTSUBSCRIPT italic_j italic_i end_POSTSUBSCRIPT ) ( italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - italic_λ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) , end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL = ( italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + italic_λ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) [ italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_π ) italic_ψ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_π ) + italic_ψ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_δ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ] - 6 italic_A start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_i italic_j italic_r end_POSTSUBSCRIPT . end_CELL end_ROW(4.21)

The presence of ψ02superscriptsubscript𝜓02\psi_{0}^{2}italic_ψ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT is at first glance somewhat surprising as the massless graviton does not necessarily play a role in the amplitude, e.g. in the limit μ1much-greater-than𝜇1\mu\gg 1italic_μ ≫ 1. We can replace it by noticing that

ψ02=μ1e2μπ,ψr2=μe2πμ1,\psi_{0}^{2}=\frac{\mu}{1-e^{-2\mu\pi}}\quad,\quad\psi_{r}^{2}=\frac{\mu}{e^{2%\pi\mu}-1}\,,italic_ψ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = divide start_ARG italic_μ end_ARG start_ARG 1 - italic_e start_POSTSUPERSCRIPT - 2 italic_μ italic_π end_POSTSUPERSCRIPT end_ARG , italic_ψ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = divide start_ARG italic_μ end_ARG start_ARG italic_e start_POSTSUPERSCRIPT 2 italic_π italic_μ end_POSTSUPERSCRIPT - 1 end_ARG ,(4.22)

so that

ψ02Aπ2=ψr2.superscriptsubscript𝜓02superscriptsubscript𝐴𝜋2superscriptsubscript𝜓𝑟2\psi_{0}^{2}A_{\pi}^{2}=\psi_{r}^{2}\,.italic_ψ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_A start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_ψ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT .(4.23)

Thus we have

k=1ψk(π)λkaijk(λiλj)2=(λi+λj)[ψi(π)ψj(π)+ψ02δij]6ψrbijr.superscriptsubscript𝑘1subscript𝜓𝑘𝜋subscript𝜆𝑘subscript𝑎𝑖𝑗𝑘superscriptsubscript𝜆𝑖subscript𝜆𝑗2subscript𝜆𝑖subscript𝜆𝑗delimited-[]subscript𝜓𝑖𝜋subscript𝜓𝑗𝜋superscriptsubscript𝜓02subscript𝛿𝑖𝑗6subscript𝜓𝑟subscript𝑏𝑖𝑗𝑟\begin{split}&\sum\limits_{k=1}^{\infty}\dfrac{\psi_{k}(\pi)}{\lambda_{k}}a_{%ijk}(\lambda_{i}-\lambda_{j})^{2}\\&=(\lambda_{i}+\lambda_{j})\left[\psi_{i}(\pi)\psi_{j}(\pi)+\psi_{0}^{2}\delta%_{ij}\right]-6\psi_{r}b_{ijr}\,.\end{split}start_ROW start_CELL end_CELL start_CELL ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT divide start_ARG italic_ψ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_π ) end_ARG start_ARG italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_ARG italic_a start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT ( italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - italic_λ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL = ( italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + italic_λ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) [ italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_π ) italic_ψ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_π ) + italic_ψ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_δ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ] - 6 italic_ψ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_b start_POSTSUBSCRIPT italic_i italic_j italic_r end_POSTSUBSCRIPT . end_CELL end_ROW(4.24)

This proves the sum rule.

Sum Rule 2.

We use Eq.(4.9) to find

k=1ψk(π)bkirλk=ψ02ψrΩdzA(z)3πzA2ψi,=ψ02ψr[ciψ02Aπ2ψi(π)2μΩdzA3πzψiA1],\begin{split}&\sum\limits_{k=1}^{\infty}\psi_{k}(\pi)\dfrac{b_{kir}}{\lambda_{%k}}=-\psi_{0}^{2}\psi_{r}\int_{\Omega}\text{d}z\,A(z)^{3}\int\limits_{\pi}^{z}%A^{-2}\partial\psi_{i}\,,\\&\,=-\psi_{0}^{2}\psi_{r}\left[c_{i}-\psi_{0}^{-2}A_{\pi}^{-2}\psi_{i}(\pi)-2%\mu\int_{\Omega}\text{d}z\,A^{3}\int\limits_{\pi}^{z}\psi_{i}A^{-1}\right]\,,%\end{split}start_ROW start_CELL end_CELL start_CELL ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_π ) divide start_ARG italic_b start_POSTSUBSCRIPT italic_k italic_i italic_r end_POSTSUBSCRIPT end_ARG start_ARG italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_ARG = - italic_ψ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ∫ start_POSTSUBSCRIPT roman_Ω end_POSTSUBSCRIPT d italic_z italic_A ( italic_z ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT ∂ italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL = - italic_ψ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT [ italic_c start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - italic_ψ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT italic_A start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_π ) - 2 italic_μ ∫ start_POSTSUBSCRIPT roman_Ω end_POSTSUBSCRIPT d italic_z italic_A start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_A start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ] , end_CELL end_ROW(4.25)

where ciΩdzAψisubscript𝑐𝑖subscriptΩd𝑧𝐴subscript𝜓𝑖c_{i}\equiv\int_{\Omega}\text{d}z\,A\psi_{i}italic_c start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≡ ∫ start_POSTSUBSCRIPT roman_Ω end_POSTSUBSCRIPT d italic_z italic_A italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT.

Using the same strategy used in Eq.(4.16), one can prove that

μ(α+β)ΩdzAα+β+1πzAαψi=ΩdzAβψiAπα+βΩdzAαψi.𝜇𝛼𝛽subscriptΩd𝑧superscript𝐴𝛼𝛽1superscriptsubscript𝜋𝑧superscript𝐴𝛼subscript𝜓𝑖subscriptΩd𝑧superscript𝐴𝛽subscript𝜓𝑖superscriptsubscript𝐴𝜋𝛼𝛽subscriptΩd𝑧superscript𝐴𝛼subscript𝜓𝑖\begin{split}&\mu(\alpha+\beta)\int_{\Omega}\text{d}z\,A^{\alpha+\beta+1}\int%\limits_{\pi}^{z}A^{-\alpha}\psi_{i}\\&=\int_{\Omega}\text{d}z\,A^{\beta}\psi_{i}-A_{\pi}^{\alpha+\beta}\int_{\Omega%}\text{d}z\,A^{-\alpha}\psi_{i}\,.\end{split}start_ROW start_CELL end_CELL start_CELL italic_μ ( italic_α + italic_β ) ∫ start_POSTSUBSCRIPT roman_Ω end_POSTSUBSCRIPT d italic_z italic_A start_POSTSUPERSCRIPT italic_α + italic_β + 1 end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT - italic_α end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL = ∫ start_POSTSUBSCRIPT roman_Ω end_POSTSUBSCRIPT d italic_z italic_A start_POSTSUPERSCRIPT italic_β end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - italic_A start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_α + italic_β end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT roman_Ω end_POSTSUBSCRIPT d italic_z italic_A start_POSTSUPERSCRIPT - italic_α end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT . end_CELL end_ROW(4.26)

We can now match the previous result by choosing β=1𝛽1\beta=1italic_β = 1 and α=1𝛼1\alpha=1italic_α = 1 such that α+β=2𝛼𝛽2\alpha+\beta=2italic_α + italic_β = 2. Remarkably, by merging the two contributions, the cisubscript𝑐𝑖c_{i}italic_c start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT part cancels and leads to the final result

k=1ψk(π)bkirλk=Aπ2ψrψi(π)ψ02ψr1Aπ2airr=Aπ2ψrψi(π)ψrairr.superscriptsubscript𝑘1subscript𝜓𝑘𝜋subscript𝑏𝑘𝑖𝑟subscript𝜆𝑘superscriptsubscript𝐴𝜋2subscript𝜓𝑟subscript𝜓𝑖𝜋superscriptsubscript𝜓02superscriptsubscript𝜓𝑟1superscriptsubscript𝐴𝜋2subscript𝑎𝑖𝑟𝑟superscriptsubscript𝐴𝜋2subscript𝜓𝑟subscript𝜓𝑖𝜋subscript𝜓𝑟subscript𝑎𝑖𝑟𝑟\begin{split}\sum\limits_{k=1}^{\infty}\psi_{k}(\pi)\dfrac{b_{kir}}{\lambda_{k%}}&=A_{\pi}^{-2}\psi_{r}\psi_{i}(\pi)-\psi_{0}^{2}\psi_{r}^{-1}A_{\pi}^{2}a_{%irr}\\&=A_{\pi}^{-2}\psi_{r}\psi_{i}(\pi)-\psi_{r}a_{irr}\,.\end{split}start_ROW start_CELL ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_π ) divide start_ARG italic_b start_POSTSUBSCRIPT italic_k italic_i italic_r end_POSTSUBSCRIPT end_ARG start_ARG italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_ARG end_CELL start_CELL = italic_A start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_π ) - italic_ψ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_A start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT italic_i italic_r italic_r end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL = italic_A start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT italic_ψ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_π ) - italic_ψ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_i italic_r italic_r end_POSTSUBSCRIPT . end_CELL end_ROW(4.27)

This concludes the proof.

V Summary and Outlook

In this work, we have proven in full generality a set of sum rules for solutions to the Sturm-Lioville(SL) problem. This generalizes our previous results put forward in [10] where similar conclusions were reached for the large μ𝜇\muitalic_μ limit of the RS model. We have then applied them and shown their power in the framework of orbifolded extra-dimensional gravity, with particular emphasis on LED, RS, and CW models. We exploit the fact that these models are conformally equivalent and thus formally possess the same KK-graviton interactions.In graviton pair-productions from matter, the sum rules have been shown to cancel the unphysical high-energy growth of the amplitudes, reducing them from 𝒪(s3)𝒪(s2)𝒪superscript𝑠3𝒪superscript𝑠2\mathcal{O}(s^{3})\to\mathcal{O}(s^{2})caligraphic_O ( italic_s start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ) → caligraphic_O ( italic_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ).The full reduction of the amplitudes to 𝒪(s)𝒪𝑠\mathcal{O}(s)caligraphic_O ( italic_s ) requires the contribution of the radion.These depend on the compactification and we have not found a general form. However, we give an example of how they can be found in the RS-model without making simplifying assumption regarding the wave-functions.

Regarding the amplitudes that do not involve the radion, we would like to comment on the applicability of our results to other models in the following. The 5D theory and its 4D limit need to fulfil a number of conditions for our approach to work. We need the 4D theory to consist of spin-2 fields with a Fierz-Pauli action. The 5D theory has to possess a covariant action with at most two derivatives and matter is localized on a brane. Under these conditions:

  1. 1.

    Regardless of cancellations in the amplitude, the sum rules still apply. If the action contains at most two derivatives, then the 5D part of each graviton will satisfy a second-order linear differential equation. All second-order linear differential equations can be recast as SL equations by multiplying them by an appropriate integration factor. The diagrams that can contribute to the scattering processes considered do not change, so the sum rules that can enter are only those derived in the previous section.

  2. 2.

    In such theories, the action fixes

    q(y)=0.𝑞𝑦0q(y)=0\,.italic_q ( italic_y ) = 0 .(5.1)

    This is an important requirement for the derivation of some of the sum rules, which should be otherwise slightly modified. It can be understood by considering the derivative structure of the action. As it can contain at most two 5D derivatives of the fields, in the basis in which the 5D graviton does not mix with any other component of the metric, only terms with two purely μsubscript𝜇\partial_{\mu}∂ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT or 5subscript5\partial_{5}∂ start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT can be present. Therefore, a term of the q(y)𝑞𝑦q(y)italic_q ( italic_y )-type would necessarily include two μsubscript𝜇\partial_{\mu}∂ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT, which belong to the kinetic term part of the Lagrangian, not to the mass part. Furthermore, from a physical point of view, this condition guarantees the presence of a massless KK-graviton (cfr. Eq.(2.6)), since it ensures that a constant wave function with a zero eigenvalue is a solution.

  3. 3.

    Using the previous argument, the corresponding SL equations are also expected to have q(y)=0𝑞𝑦0q(y)=0italic_q ( italic_y ) = 0. The possible relevant differences with respect to what is derived in this work depend on the type of compactification and they are hidden in the boundary conditions. In the case of orbifold compactification, we used

    dψidy|Ω=0.evaluated-atdsubscript𝜓𝑖d𝑦Ω0\left.\dfrac{\text{d}\psi_{i}}{\text{d}y}\right|_{\partial\Omega}=0\,.divide start_ARG d italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG start_ARG d italic_y end_ARG | start_POSTSUBSCRIPT ∂ roman_Ω end_POSTSUBSCRIPT = 0 .(5.2)

    The absence of such a condition might result in a modification of some results, which has then to be taken into account during the derivation of the sum rules.

The cancellations of (n)superscript𝑛\mathcal{M}^{(n)}caligraphic_M start_POSTSUPERSCRIPT ( italic_n ) end_POSTSUPERSCRIPT for n>1𝑛1n>1italic_n > 1 that are encoded in the sum rules have a very notable impact in phenomenological studies involving KK-graviton production, e.g. in studies of the early universe where high-momentum transfer is common. Such cancellations are possible thanks to the underlying geometric structure of the original 5D theory.

Acknowledgments

A.d.G. thanks Alejandro Pérez Rodríguez for useful discussions and especially thanks Carlos A. Argüelles and the group of Palfrey House for their hospitality and the stimulating working environment during which a core part of this work was realised.The work of A.d.G. is supported by the European Union’s Horizon 2020 Marie Skłodowska-Curie grant agreement No 860881-HIDDeN.

Note added

The initial version of this work contained an extensive discussion of the sum rules for graviton-scattering. After the first version appeared on the arXiv, it was brought to our attention that the proof of the sum rules reported in Ref.[8] is also based on the properties of solutions of the Sturm-Liouville problem and not limited to the Randall-Sundrum model. Therefore, this proof is already general and we decided to remove this part from the updated version of this work.

Appendix A Explicit Example: Large Extra-Dimensions

A.1 The Model

The LED[24] can be considered as the RS in the limit k0𝑘0k\to 0italic_k → 0 (thus μ0𝜇0\mu\to 0italic_μ → 0) while R𝑅Ritalic_R is kept fixed. As in the main text, we will work in units of R𝑅Ritalic_R, or, equivalently, we will set R=1𝑅1R=1italic_R = 1.The numerical coefficients that enter the sum rules in Table1 can be computed exactly.The EOMs of ψnsubscript𝜓𝑛\psi_{n}italic_ψ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT are given by

(y2+mn2)ψn=0,superscriptsubscript𝑦2superscriptsubscript𝑚𝑛2subscript𝜓𝑛0\left(\partial_{y}^{2}+m_{n}^{2}\right)\psi_{n}=0\,,( ∂ start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_m start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) italic_ψ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = 0 ,(A.1)

with solutions

ψ0(y)=N0[1+α0|y|],subscript𝜓0𝑦subscript𝑁0delimited-[]1subscript𝛼0𝑦\displaystyle\psi_{0}(y)=N_{0}\left[1+\alpha_{0}|y|\right]\,,italic_ψ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_y ) = italic_N start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT [ 1 + italic_α start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT | italic_y | ] ,(A.2)
ψn(y)=Nn[cos((mn|y|))+αnsin((mn|y|))],subscript𝜓𝑛𝑦subscript𝑁𝑛delimited-[]subscript𝑚𝑛𝑦subscript𝛼𝑛subscript𝑚𝑛𝑦\displaystyle\psi_{n}(y)=N_{n}\left[\cos{\left(m_{n}|y|\right)}+\alpha_{n}\sin%{\left(m_{n}|y|\right)}\right]\,,italic_ψ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_y ) = italic_N start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT [ roman_cos ( start_ARG ( italic_m start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT | italic_y | ) end_ARG ) + italic_α start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT roman_sin ( start_ARG ( italic_m start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT | italic_y | ) end_ARG ) ] ,(A.3)

where we have set m0=0subscript𝑚00m_{0}=0italic_m start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 0.Imposing the boundary conditions yψn=0subscript𝑦subscript𝜓𝑛0\partial_{y}\psi_{n}=0∂ start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT italic_ψ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = 0, we need to set αn=α0=0subscript𝛼𝑛subscript𝛼00\alpha_{n}=\alpha_{0}=0italic_α start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_α start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 0, and hence

ψ0=N0,ψn(y)=Nncos((mny)).\psi_{0}=N_{0}\quad,\quad\psi_{n}(y)=N_{n}\cos{\left(m_{n}y\right)}\,.italic_ψ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_N start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_ψ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_y ) = italic_N start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT roman_cos ( start_ARG ( italic_m start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_y ) end_ARG ) .(A.4)

By periodicity of the solutions, we can also fix the masses

cos((mny))=cos((mn(y+2π)))mn=n.formulae-sequencesubscript𝑚𝑛𝑦subscript𝑚𝑛𝑦2𝜋subscript𝑚𝑛𝑛\cos{(m_{n}y)}=\cos{(m_{n}(y+2\pi))}\quad\Rightarrow\quad m_{n}=n\,.roman_cos ( start_ARG ( italic_m start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_y ) end_ARG ) = roman_cos ( start_ARG ( italic_m start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_y + 2 italic_π ) ) end_ARG ) ⇒ italic_m start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_n .(A.5)

With such definitions the wave functions are orthogonal and normalized444We have chosen here to incorporate in the scalar product an overall factor of 1/π1𝜋1/\pi1 / italic_π.

1πππdyψi(y)ψj(y)=δij,1𝜋superscriptsubscript𝜋𝜋d𝑦subscript𝜓𝑖𝑦subscript𝜓𝑗𝑦subscript𝛿𝑖𝑗\frac{1}{\pi}\int\limits_{-\pi}^{\pi}\text{d}y\ \psi_{i}(y)\psi_{j}(y)=\delta_%{ij}\,,divide start_ARG 1 end_ARG start_ARG italic_π end_ARG ∫ start_POSTSUBSCRIPT - italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_π end_POSTSUPERSCRIPT d italic_y italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_y ) italic_ψ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_y ) = italic_δ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ,(A.6)

fixing

N0=12,Nn=1.N_{0}=\frac{1}{\sqrt{2}}\quad,\quad N_{n}=1\,.italic_N start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG square-root start_ARG 2 end_ARG end_ARG , italic_N start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = 1 .(A.7)

To simplify the discussion and avoid redundant ±plus-or-minus\pm± signs, we consider the matter content to be localized on the brane at y=0𝑦0y=0italic_y = 0. This does not affect any of the results expected from the discussion in the main text.Thus, the fifth-dimensional wave functions are given by

ψ0(y)=N0=12ψn(y)=Nncos((ny))=cos((ny)).subscript𝜓0𝑦subscript𝑁012subscript𝜓𝑛𝑦subscript𝑁𝑛𝑛𝑦𝑛𝑦\begin{split}&\psi_{0}(y)=N_{0}=\frac{1}{\sqrt{2}}\\&\psi_{n}(y)=N_{n}\cos{(ny)}=\cos{(ny)}\,.\end{split}start_ROW start_CELL end_CELL start_CELL italic_ψ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_y ) = italic_N start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG square-root start_ARG 2 end_ARG end_ARG end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL italic_ψ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_y ) = italic_N start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT roman_cos ( start_ARG ( italic_n italic_y ) end_ARG ) = roman_cos ( start_ARG ( italic_n italic_y ) end_ARG ) . end_CELL end_ROW(A.8)

A.2 Sum Rules

We turn now to the sum rules.According to the definitions of Eq.s(2.15) and (2.16), we define

aijkNiNjNkχijk,subscript𝑎𝑖𝑗𝑘subscript𝑁𝑖subscript𝑁𝑗subscript𝑁𝑘subscript𝜒𝑖𝑗𝑘\displaystyle a_{ijk}\equiv N_{i}N_{j}N_{k}\,\chi_{ijk}\,,italic_a start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT ≡ italic_N start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_χ start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT ,(A.9)
bijkNiNjNkχ~ijk,subscript𝑏𝑖𝑗𝑘subscript𝑁𝑖subscript𝑁𝑗subscript𝑁𝑘subscript~𝜒𝑖𝑗𝑘\displaystyle b_{ijk}\equiv N_{i}N_{j}N_{k}\,\tilde{\chi}_{ijk}\,,italic_b start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT ≡ italic_N start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT over~ start_ARG italic_χ end_ARG start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT ,(A.10)

so that

χijk1πππdycos(iy)cos(jy)cos(ky),subscript𝜒𝑖𝑗𝑘1𝜋superscriptsubscript𝜋𝜋d𝑦𝑖𝑦𝑗𝑦𝑘𝑦\displaystyle\chi_{ijk}\equiv\frac{1}{\pi}\int\limits_{-\pi}^{\pi}\text{d}y\ %\cos(iy)\cos(jy)\cos(ky)\,,italic_χ start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT ≡ divide start_ARG 1 end_ARG start_ARG italic_π end_ARG ∫ start_POSTSUBSCRIPT - italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_π end_POSTSUPERSCRIPT d italic_y roman_cos ( start_ARG italic_i italic_y end_ARG ) roman_cos ( start_ARG italic_j italic_y end_ARG ) roman_cos ( start_ARG italic_k italic_y end_ARG ) ,(A.11)
χ~ijkijπππdysin(iy)sin(jy)cos(ky).subscript~𝜒𝑖𝑗𝑘𝑖𝑗𝜋superscriptsubscript𝜋𝜋d𝑦𝑖𝑦𝑗𝑦𝑘𝑦\displaystyle\tilde{\chi}_{ijk}\equiv\frac{ij}{\pi}\int\limits_{-\pi}^{\pi}%\text{d}y\ \sin(iy)\sin(jy)\cos(ky)\,.over~ start_ARG italic_χ end_ARG start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT ≡ divide start_ARG italic_i italic_j end_ARG start_ARG italic_π end_ARG ∫ start_POSTSUBSCRIPT - italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_π end_POSTSUPERSCRIPT d italic_y roman_sin ( start_ARG italic_i italic_y end_ARG ) roman_sin ( start_ARG italic_j italic_y end_ARG ) roman_cos ( start_ARG italic_k italic_y end_ARG ) .(A.12)

One can calculate explicitly the integrals which gives the rather simple expressions

χijk=12[δ(ijk),0+δ(i+jk),0+δ(ij+k),0+δ(i+j+k),0],subscript𝜒𝑖𝑗𝑘12delimited-[]subscript𝛿𝑖𝑗𝑘0subscript𝛿𝑖𝑗𝑘0subscript𝛿𝑖𝑗𝑘0subscript𝛿𝑖𝑗𝑘0\displaystyle\chi_{ijk}=\frac{1}{2}\left[\delta_{(i-j-k),0}+\delta_{(i+j-k),0}%+\delta_{(i-j+k),0}+\delta_{(i+j+k),0}\right]\,,italic_χ start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 end_ARG [ italic_δ start_POSTSUBSCRIPT ( italic_i - italic_j - italic_k ) , 0 end_POSTSUBSCRIPT + italic_δ start_POSTSUBSCRIPT ( italic_i + italic_j - italic_k ) , 0 end_POSTSUBSCRIPT + italic_δ start_POSTSUBSCRIPT ( italic_i - italic_j + italic_k ) , 0 end_POSTSUBSCRIPT + italic_δ start_POSTSUBSCRIPT ( italic_i + italic_j + italic_k ) , 0 end_POSTSUBSCRIPT ] ,(A.13)
χ~ijk=ij2[δ(ijk),0δ(i+jk),0+δ(ij+k),0δ(i+j+k),0],subscript~𝜒𝑖𝑗𝑘𝑖𝑗2delimited-[]subscript𝛿𝑖𝑗𝑘0subscript𝛿𝑖𝑗𝑘0subscript𝛿𝑖𝑗𝑘0subscript𝛿𝑖𝑗𝑘0\displaystyle\tilde{\chi}_{ijk}=\frac{ij}{2}\left[\delta_{(i-j-k),0}-\delta_{(%i+j-k),0}+\delta_{(i-j+k),0}-\delta_{(i+j+k),0}\right]\,,over~ start_ARG italic_χ end_ARG start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT = divide start_ARG italic_i italic_j end_ARG start_ARG 2 end_ARG [ italic_δ start_POSTSUBSCRIPT ( italic_i - italic_j - italic_k ) , 0 end_POSTSUBSCRIPT - italic_δ start_POSTSUBSCRIPT ( italic_i + italic_j - italic_k ) , 0 end_POSTSUBSCRIPT + italic_δ start_POSTSUBSCRIPT ( italic_i - italic_j + italic_k ) , 0 end_POSTSUBSCRIPT - italic_δ start_POSTSUBSCRIPT ( italic_i + italic_j + italic_k ) , 0 end_POSTSUBSCRIPT ] ,(A.14)

where δi,jsubscript𝛿𝑖𝑗\delta_{i,j}italic_δ start_POSTSUBSCRIPT italic_i , italic_j end_POSTSUBSCRIPT is the Kronecker delta.The above quantities satisfy Eq.(2.20),

i2χijk=χ~ijk+χ~ikj.superscript𝑖2subscript𝜒𝑖𝑗𝑘subscript~𝜒𝑖𝑗𝑘subscript~𝜒𝑖𝑘𝑗i^{2}\chi_{ijk}=\tilde{\chi}_{ijk}+\tilde{\chi}_{ikj}\,.italic_i start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_χ start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT = over~ start_ARG italic_χ end_ARG start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT + over~ start_ARG italic_χ end_ARG start_POSTSUBSCRIPT italic_i italic_k italic_j end_POSTSUBSCRIPT .(A.15)

Similarly, we define the coefficients associated with the radion as

b~ijrNiNjNrχ~ijr,subscript~𝑏𝑖𝑗𝑟subscript𝑁𝑖subscript𝑁𝑗subscript𝑁𝑟subscript~𝜒𝑖𝑗𝑟\displaystyle\tilde{b}_{ijr}\to N_{i}N_{j}N_{r}\,\tilde{\chi}_{ijr}\,,over~ start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_i italic_j italic_r end_POSTSUBSCRIPT → italic_N start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT over~ start_ARG italic_χ end_ARG start_POSTSUBSCRIPT italic_i italic_j italic_r end_POSTSUBSCRIPT ,(A.16)
airrNiNr2χirr,subscript𝑎𝑖𝑟𝑟subscript𝑁𝑖superscriptsubscript𝑁𝑟2subscript𝜒𝑖𝑟𝑟\displaystyle a_{irr}\to N_{i}N_{r}^{2}\,\chi_{irr}\,,italic_a start_POSTSUBSCRIPT italic_i italic_r italic_r end_POSTSUBSCRIPT → italic_N start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_χ start_POSTSUBSCRIPT italic_i italic_r italic_r end_POSTSUBSCRIPT ,(A.17)

with

χ~ijrijπππdysin(iy)sin(jy)=i2δi,j,subscript~𝜒𝑖𝑗𝑟𝑖𝑗𝜋superscriptsubscript𝜋𝜋d𝑦𝑖𝑦𝑗𝑦superscript𝑖2subscript𝛿𝑖𝑗\displaystyle\tilde{\chi}_{ijr}\equiv\frac{ij}{\pi}\int\limits_{-\pi}^{\pi}%\text{d}y\sin(iy)\sin(jy)=i^{2}\delta_{i,j}\,,over~ start_ARG italic_χ end_ARG start_POSTSUBSCRIPT italic_i italic_j italic_r end_POSTSUBSCRIPT ≡ divide start_ARG italic_i italic_j end_ARG start_ARG italic_π end_ARG ∫ start_POSTSUBSCRIPT - italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_π end_POSTSUPERSCRIPT d italic_y roman_sin ( start_ARG italic_i italic_y end_ARG ) roman_sin ( start_ARG italic_j italic_y end_ARG ) = italic_i start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_δ start_POSTSUBSCRIPT italic_i , italic_j end_POSTSUBSCRIPT ,(A.18)
χirr1πππdycos(iy)=2δi,0.subscript𝜒𝑖𝑟𝑟1𝜋superscriptsubscript𝜋𝜋d𝑦𝑖𝑦2subscript𝛿𝑖0\displaystyle\chi_{irr}\equiv\frac{1}{\pi}\int\limits_{-\pi}^{\pi}\text{d}y%\cos(iy)=2\delta_{i,0}\,.italic_χ start_POSTSUBSCRIPT italic_i italic_r italic_r end_POSTSUBSCRIPT ≡ divide start_ARG 1 end_ARG start_ARG italic_π end_ARG ∫ start_POSTSUBSCRIPT - italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_π end_POSTSUPERSCRIPT d italic_y roman_cos ( start_ARG italic_i italic_y end_ARG ) = 2 italic_δ start_POSTSUBSCRIPT italic_i , 0 end_POSTSUBSCRIPT .(A.19)

The sum rules needed for the cancellation of the gravitons pair-production from matter amplitudes, counterparts of those in Table1, are given in Table2.

SR 1:k=0Nk2χijk=1superscriptsubscript𝑘0superscriptsubscript𝑁𝑘2subscript𝜒𝑖𝑗𝑘1\sum\limits_{k=0}^{\infty}N_{k}^{2}\chi_{ijk}=1∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_N start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_χ start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT = 1
SR 2:k=0Nk2k2χijk=i2+j2superscriptsubscript𝑘0superscriptsubscript𝑁𝑘2superscript𝑘2subscript𝜒𝑖𝑗𝑘superscript𝑖2superscript𝑗2\sum\limits_{k=0}^{\infty}N_{k}^{2}k^{2}\chi_{ijk}=i^{2}+j^{2}∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_N start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_χ start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT = italic_i start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_j start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT
SR 3:k=0Nk2χ~kij=i2superscriptsubscript𝑘0superscriptsubscript𝑁𝑘2subscript~𝜒𝑘𝑖𝑗superscript𝑖2\sum\limits_{k=0}^{\infty}N_{k}^{2}\tilde{\chi}_{kij}=i^{2}∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_N start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT over~ start_ARG italic_χ end_ARG start_POSTSUBSCRIPT italic_k italic_i italic_j end_POSTSUBSCRIPT = italic_i start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT
SR 4:k=0Nk2χ~ijk=0superscriptsubscript𝑘0superscriptsubscript𝑁𝑘2subscript~𝜒𝑖𝑗𝑘0\sum\limits_{k=0}^{\infty}N_{k}^{2}\tilde{\chi}_{ijk}=0∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_N start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT over~ start_ARG italic_χ end_ARG start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT = 0
SR 5:k=1Nk2NiNjχijkk2(i2j2)2=(i2+j2)(NiNj+N02δij)superscriptsubscript𝑘1superscriptsubscript𝑁𝑘2subscript𝑁𝑖subscript𝑁𝑗subscript𝜒𝑖𝑗𝑘superscript𝑘2superscriptsuperscript𝑖2superscript𝑗22superscript𝑖2superscript𝑗2subscript𝑁𝑖subscript𝑁𝑗superscriptsubscript𝑁02subscript𝛿𝑖𝑗\sum\limits_{k=1}^{\infty}N_{k}^{2}N_{i}N_{j}\frac{\chi_{ijk}}{k^{2}}(i^{2}-j^%{2})^{2}=\left(i^{2}+j^{2}\right)\left(N_{i}N_{j}+N_{0}^{2}\delta_{ij}\right)∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_N start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_N start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT divide start_ARG italic_χ start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT end_ARG start_ARG italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( italic_i start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_j start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = ( italic_i start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_j start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ( italic_N start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT + italic_N start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_δ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT )
6Nr2χ~ijr6superscriptsubscript𝑁𝑟2subscript~𝜒𝑖𝑗𝑟-6N_{r}^{2}\tilde{\chi}_{ijr}- 6 italic_N start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT over~ start_ARG italic_χ end_ARG start_POSTSUBSCRIPT italic_i italic_j italic_r end_POSTSUBSCRIPT
SR 6:j=1Nj2χ~ijrj2=1Nr2χirrsuperscriptsubscript𝑗1superscriptsubscript𝑁𝑗2subscript~𝜒𝑖𝑗𝑟superscript𝑗21superscriptsubscript𝑁𝑟2subscript𝜒𝑖𝑟𝑟\sum\limits_{j=1}^{\infty}N_{j}^{2}\frac{\tilde{\chi}_{ijr}}{j^{2}}=1-N_{r}^{2%}\chi_{irr}∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_N start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT divide start_ARG over~ start_ARG italic_χ end_ARG start_POSTSUBSCRIPT italic_i italic_j italic_r end_POSTSUBSCRIPT end_ARG start_ARG italic_j start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG = 1 - italic_N start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_χ start_POSTSUBSCRIPT italic_i italic_r italic_r end_POSTSUBSCRIPT
Sum Rule 1

Let us focus first on χijksubscript𝜒𝑖𝑗𝑘\chi_{ijk}italic_χ start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT proving that

k=0Nk2χijk=1.superscriptsubscript𝑘0superscriptsubscript𝑁𝑘2subscript𝜒𝑖𝑗𝑘1\sum\limits_{k=0}^{\infty}N_{k}^{2}\chi_{ijk}=1\ .∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_N start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_χ start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT = 1 .(A.20)

It is clear from the definition of Eq.(A.13) that χ00k=2δk,0subscript𝜒00𝑘2subscript𝛿𝑘0\chi_{00k}=2\delta_{k,0}italic_χ start_POSTSUBSCRIPT 00 italic_k end_POSTSUBSCRIPT = 2 italic_δ start_POSTSUBSCRIPT italic_k , 0 end_POSTSUBSCRIPT thus the sum rule is satisfied for i=j=0𝑖𝑗0i=j=0italic_i = italic_j = 0 as N02=1/2superscriptsubscript𝑁0212N_{0}^{2}=1/2italic_N start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 1 / 2. If ij=0𝑖𝑗0i\neq j=0italic_i ≠ italic_j = 0, then χi0k=δkisubscript𝜒𝑖0𝑘subscript𝛿𝑘𝑖\chi_{i0k}=\delta_{ki}italic_χ start_POSTSUBSCRIPT italic_i 0 italic_k end_POSTSUBSCRIPT = italic_δ start_POSTSUBSCRIPT italic_k italic_i end_POSTSUBSCRIPT which sets the sum to 1111, as Ni0=1subscript𝑁𝑖01N_{i\neq 0}=1italic_N start_POSTSUBSCRIPT italic_i ≠ 0 end_POSTSUBSCRIPT = 1. Finally, in case i,j0𝑖𝑗0i,j\neq 0italic_i , italic_j ≠ 0, one can easily check that just two terms contribute with 1/2121/21 / 2, thus giving 1/2+1/2=1121211/2+1/2=11 / 2 + 1 / 2 = 1, proving the last case of the sum rule.

Sum Rules 2,3,4

Let us now focus on the sum rules involving k2χijksuperscript𝑘2subscript𝜒𝑖𝑗𝑘k^{2}\chi_{ijk}italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_χ start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT. First, we look at k=0Nk2χ~ijksuperscriptsubscript𝑘0superscriptsubscript𝑁𝑘2subscript~𝜒𝑖𝑗𝑘\sum\limits_{k=0}^{\infty}N_{k}^{2}\tilde{\chi}_{ijk}∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_N start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT over~ start_ARG italic_χ end_ARG start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT. It is clear from Eq.(A.14) that χ~0jk=χ~i0k=χ~00k=0subscript~𝜒0𝑗𝑘subscript~𝜒𝑖0𝑘subscript~𝜒00𝑘0\tilde{\chi}_{0jk}=\tilde{\chi}_{i0k}=\tilde{\chi}_{00k}=0over~ start_ARG italic_χ end_ARG start_POSTSUBSCRIPT 0 italic_j italic_k end_POSTSUBSCRIPT = over~ start_ARG italic_χ end_ARG start_POSTSUBSCRIPT italic_i 0 italic_k end_POSTSUBSCRIPT = over~ start_ARG italic_χ end_ARG start_POSTSUBSCRIPT 00 italic_k end_POSTSUBSCRIPT = 0, thus the only non trivial case is for i,j0𝑖𝑗0i,j\neq 0italic_i , italic_j ≠ 0. However, as k𝑘kitalic_k runs from 00 to \infty, it is clear that only two terms contribute and they are opposite in sign, i.e. k=0Nk2χ~ijk(11)=0proportional-tosuperscriptsubscript𝑘0superscriptsubscript𝑁𝑘2subscript~𝜒𝑖𝑗𝑘110\sum\limits_{k=0}^{\infty}N_{k}^{2}\tilde{\chi}_{ijk}\propto(1-1)=0∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_N start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT over~ start_ARG italic_χ end_ARG start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT ∝ ( 1 - 1 ) = 0. In general, then we have that

k=0Nk2χ~ijk=0.superscriptsubscript𝑘0superscriptsubscript𝑁𝑘2subscript~𝜒𝑖𝑗𝑘0\sum\limits_{k=0}^{\infty}N_{k}^{2}\tilde{\chi}_{ijk}=0\ .∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_N start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT over~ start_ARG italic_χ end_ARG start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT = 0 .(A.21)

The other rules can be obtained using the sum rules we have derived up to now with Eq.(A.15), which implies

Nj2i2χijk=Nj2(χ~ijk+χ~ikj).superscriptsubscript𝑁𝑗2superscript𝑖2subscript𝜒𝑖𝑗𝑘superscriptsubscript𝑁𝑗2subscript~𝜒𝑖𝑗𝑘subscript~𝜒𝑖𝑘𝑗N_{j}^{2}i^{2}\chi_{ijk}=N_{j}^{2}(\tilde{\chi}_{ijk}+\tilde{\chi}_{ikj})\ .italic_N start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_i start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_χ start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT = italic_N start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( over~ start_ARG italic_χ end_ARG start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT + over~ start_ARG italic_χ end_ARG start_POSTSUBSCRIPT italic_i italic_k italic_j end_POSTSUBSCRIPT ) .(A.22)

Summing over the index-j𝑗jitalic_j and using both Eq.s(A.20) and (A.21) we get

j=0Nj2χ~ijk=i2.superscriptsubscript𝑗0superscriptsubscript𝑁𝑗2subscript~𝜒𝑖𝑗𝑘superscript𝑖2\sum\limits_{j=0}^{\infty}N_{j}^{2}\tilde{\chi}_{ijk}=i^{2}\ .∑ start_POSTSUBSCRIPT italic_j = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_N start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT over~ start_ARG italic_χ end_ARG start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT = italic_i start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT .(A.23)

Finally, we can use Eq.(A.15) and the above relations again to find the second sum rule of interest

k=0Nk2k2χijk=i2+j2.superscriptsubscript𝑘0superscriptsubscript𝑁𝑘2superscript𝑘2subscript𝜒𝑖𝑗𝑘superscript𝑖2superscript𝑗2\sum\limits_{k=0}^{\infty}N_{k}^{2}k^{2}\chi_{ijk}=i^{2}+j^{2}\ .∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_N start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_χ start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT = italic_i start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_j start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT .

It is instructive to make an explicit check of such relation since we have not verified all of them explicitly; let us assume without loss of generality that j>k0𝑗𝑘0j>k\neq 0italic_j > italic_k ≠ 0, then

k=0k2χkij=12[(i+j)2+(ij)2]=12[2i2+2j2]=i2+j2,superscriptsubscript𝑘0superscript𝑘2subscript𝜒𝑘𝑖𝑗12delimited-[]superscript𝑖𝑗2superscript𝑖𝑗212delimited-[]2superscript𝑖22superscript𝑗2superscript𝑖2superscript𝑗2\begin{split}\sum\limits_{k=0}^{\infty}k^{2}\chi_{kij}&=\frac{1}{2}\left[(i+j)%^{2}+(i-j)^{2}\right]\\&=\frac{1}{2}\left[2i^{2}+2j^{2}\right]=i^{2}+j^{2}\,,\end{split}start_ROW start_CELL ∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_χ start_POSTSUBSCRIPT italic_k italic_i italic_j end_POSTSUBSCRIPT end_CELL start_CELL = divide start_ARG 1 end_ARG start_ARG 2 end_ARG [ ( italic_i + italic_j ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ( italic_i - italic_j ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL = divide start_ARG 1 end_ARG start_ARG 2 end_ARG [ 2 italic_i start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 italic_j start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] = italic_i start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_j start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , end_CELL end_ROW(A.24)

which is what we expected.

Sum Rule 5

We need to prove that k=1Nk2χijkk2(i2j2)2=(i2+j2)(1+N02χij0)6Nr2χ~ijrsuperscriptsubscript𝑘1superscriptsubscript𝑁𝑘2subscript𝜒𝑖𝑗𝑘superscript𝑘2superscriptsuperscript𝑖2superscript𝑗22superscript𝑖2superscript𝑗21superscriptsubscript𝑁02subscript𝜒𝑖𝑗06superscriptsubscript𝑁𝑟2subscript~𝜒𝑖𝑗𝑟\sum\limits_{k=1}^{\infty}N_{k}^{2}\frac{\chi_{ijk}}{k^{2}}(i^{2}-j^{2})^{2}=%\left(i^{2}+j^{2}\right)\left(1+N_{0}^{2}\chi_{ij0}\right)-6N_{r}^{2}\tilde{%\chi}_{ijr}∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_N start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT divide start_ARG italic_χ start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT end_ARG start_ARG italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( italic_i start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_j start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = ( italic_i start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_j start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ( 1 + italic_N start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_χ start_POSTSUBSCRIPT italic_i italic_j 0 end_POSTSUBSCRIPT ) - 6 italic_N start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT over~ start_ARG italic_χ end_ARG start_POSTSUBSCRIPT italic_i italic_j italic_r end_POSTSUBSCRIPT. The fastest method is to verify it explicitly. Looking at the definitions of the coefficients of Eq.s(A.11) and (A.18), it is clear that if i=j=0𝑖𝑗0i=j=0italic_i = italic_j = 0 the sum rule is trivially satisfied. The right-hand-side of the sum rule can be written as (i2+j2)(1+1/2δij)3i2δi,jsuperscript𝑖2superscript𝑗2112subscript𝛿𝑖𝑗3superscript𝑖2subscript𝛿𝑖𝑗\left(i^{2}+j^{2}\right)\left(1+1/2\delta_{ij}\right)-3i^{2}\delta_{i,j}( italic_i start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_j start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ( 1 + 1 / 2 italic_δ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ) - 3 italic_i start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_δ start_POSTSUBSCRIPT italic_i , italic_j end_POSTSUBSCRIPT, so let us consider the case i=j0𝑖𝑗0i=j\neq 0italic_i = italic_j ≠ 0 and ij𝑖𝑗i\neq jitalic_i ≠ italic_j separately. In the first case, the left-hand-side is 00, while the right-hand-side becomes 2i23/23i2=02superscript𝑖2323superscript𝑖202i^{2}\cdot 3/2-3i^{2}=02 italic_i start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ⋅ 3 / 2 - 3 italic_i start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 0, and thus it is satisfied. The case in which ij=0𝑖𝑗0i\neq j=0italic_i ≠ italic_j = 0 can be easily verified too as most of the terms disappear. Finally if ij0𝑖𝑗0i\neq j\neq 0italic_i ≠ italic_j ≠ 0

k=1Nk2χijkk2(i2j2)2=(i2j2)22[1(i+j)2+1(ij)2],=(i2j2)2122(i2+j2)(i2j2)2=i2+j2,\begin{split}\sum\limits_{k=1}^{\infty}N_{k}^{2}\frac{\chi_{ijk}}{k^{2}}(i^{2}%-j^{2})^{2}&=\frac{(i^{2}-j^{2})^{2}}{2}\left[\frac{1}{(i+j)^{2}}+\frac{1}{(i-%j)^{2}}\right]\,,\\&=(i^{2}-j^{2})^{2}\frac{1}{2}\frac{2(i^{2}+j^{2})}{(i^{2}-j^{2})^{2}}=i^{2}+j%^{2}\ ,\end{split}start_ROW start_CELL ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_N start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT divide start_ARG italic_χ start_POSTSUBSCRIPT italic_i italic_j italic_k end_POSTSUBSCRIPT end_ARG start_ARG italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( italic_i start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_j start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL start_CELL = divide start_ARG ( italic_i start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_j start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG [ divide start_ARG 1 end_ARG start_ARG ( italic_i + italic_j ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + divide start_ARG 1 end_ARG start_ARG ( italic_i - italic_j ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ] , end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL = ( italic_i start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_j start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG divide start_ARG 2 ( italic_i start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_j start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) end_ARG start_ARG ( italic_i start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_j start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG = italic_i start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_j start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , end_CELL end_ROW(A.25)

which proves the last scenario and thus the sum rule.

Sum Rule 6

The sum rule we are trying to prove is j=1Nj2χ~ijrj2=1Nr2χirr=1δi,0superscriptsubscript𝑗1superscriptsubscript𝑁𝑗2subscript~𝜒𝑖𝑗𝑟superscript𝑗21superscriptsubscript𝑁𝑟2subscript𝜒𝑖𝑟𝑟1subscript𝛿𝑖0\sum\limits_{j=1}^{\infty}N_{j}^{2}\frac{\tilde{\chi}_{ijr}}{j^{2}}=1-N_{r}^{2%}\chi_{irr}=1-\delta_{i,0}∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_N start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT divide start_ARG over~ start_ARG italic_χ end_ARG start_POSTSUBSCRIPT italic_i italic_j italic_r end_POSTSUBSCRIPT end_ARG start_ARG italic_j start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG = 1 - italic_N start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_χ start_POSTSUBSCRIPT italic_i italic_r italic_r end_POSTSUBSCRIPT = 1 - italic_δ start_POSTSUBSCRIPT italic_i , 0 end_POSTSUBSCRIPT. In the case i=0𝑖0i=0italic_i = 0 the proof is trivial as χ~0jr=0subscript~𝜒0𝑗𝑟0\tilde{\chi}_{0jr}=0over~ start_ARG italic_χ end_ARG start_POSTSUBSCRIPT 0 italic_j italic_r end_POSTSUBSCRIPT = 0 and hence we get 0=0000=00 = 0. If i0𝑖0i\neq 0italic_i ≠ 0 we need to check that j=1Nj2χ~ijrj2=1superscriptsubscript𝑗1superscriptsubscript𝑁𝑗2subscript~𝜒𝑖𝑗𝑟superscript𝑗21\sum\limits_{j=1}^{\infty}N_{j}^{2}\frac{\tilde{\chi}_{ijr}}{j^{2}}=1∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_N start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT divide start_ARG over~ start_ARG italic_χ end_ARG start_POSTSUBSCRIPT italic_i italic_j italic_r end_POSTSUBSCRIPT end_ARG start_ARG italic_j start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG = 1. This holds as j=1Nj2χ~ijrj2=j=1ijδi,j=1superscriptsubscript𝑗1superscriptsubscript𝑁𝑗2subscript~𝜒𝑖𝑗𝑟superscript𝑗2superscriptsubscript𝑗1𝑖𝑗subscript𝛿𝑖𝑗1\sum\limits_{j=1}^{\infty}N_{j}^{2}\frac{\tilde{\chi}_{ijr}}{j^{2}}=\sum%\limits_{j=1}^{\infty}\frac{i}{j}\delta_{i,j}=1∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_N start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT divide start_ARG over~ start_ARG italic_χ end_ARG start_POSTSUBSCRIPT italic_i italic_j italic_r end_POSTSUBSCRIPT end_ARG start_ARG italic_j start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG = ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT divide start_ARG italic_i end_ARG start_ARG italic_j end_ARG italic_δ start_POSTSUBSCRIPT italic_i , italic_j end_POSTSUBSCRIPT = 1, concluding the proof.

References

  • [1]M.Fierz and W.Pauli, On relativistic wave equations for particles ofarbitrary spin in an electromagnetic field, Proc. Roy. Soc. Lond. A 173 (1939) 211–232.
  • [2]N.Arkani-Hamed, H.Georgi, and M.D. Schwartz, Effective field theoryfor massive gravitons and gravity in theory space, Annals Phys. 305(2003) 96–118, [hep-th/0210184].
  • [3]C.deRham, G.Gabadadze, and A.J. Tolley, Resummation of MassiveGravity, Phys. Rev. Lett. 106 (2011) 231101,[arXiv:1011.1232].
  • [4]K.Hinterbichler, Theoretical Aspects of Massive Gravity, Rev. Mod.Phys. 84 (2012) 671–710, [arXiv:1105.3735].
  • [5]M.D. Schwartz, Constructing gravitational dimensions, Phys. Rev. D68 (2003) 024029, [hep-th/0303114].
  • [6]R.SekharChivukula, D.Foren, K.A. Mohan, D.Sengupta, and E.H. Simmons,Scattering amplitudes of massive spin-2 Kaluza-Klein states grow onlyas 𝒪(s)𝒪𝑠{\cal O}(s)caligraphic_O ( italic_s ), Phys. Rev. D 101 (2020), no.5 055013,[arXiv:1906.11098].
  • [7]R.SekharChivukula, D.Foren, K.A. Mohan, D.Sengupta, and E.H. Simmons,Sum Rules for Massive Spin-2 Kaluza-Klein Elastic ScatteringAmplitudes, Phys. Rev. D 100 (2019), no.11 115033,[arXiv:1910.06159].
  • [8]R.S. Chivukula, D.Foren, K.A. Mohan, D.Sengupta, and E.H. Simmons, Massive Spin-2 Scattering Amplitudes in Extra-Dimensional Theories, Phys.Rev. D 101 (2020), no.7 075013,[arXiv:2002.12458].
  • [9]J.Bonifacio and K.Hinterbichler, Unitarization from Geometry, JHEP12 (2019) 165, [arXiv:1910.04767].
  • [10]A.deGiorgi and S.Vogl, Unitarity in KK-graviton production: A casestudy in warped extra-dimensions, JHEP 04 (2021) 143,[arXiv:2012.09672].
  • [11]R.S. Chivukula, D.Foren, K.A. Mohan, D.Sengupta, and E.H. Simmons, Spin-2 Kaluza-Klein scattering in a stabilized warped background, Phys.Rev. D 107 (2023), no.3 035015,[arXiv:2206.10628].
  • [12]R.S. Chivukula, J.A. Gill, K.A. Mohan, D.Sengupta, E.H. Simmons, andX.Wang, Scattering Amplitudes of Massive Spin-2 Kaluza-Klein Stateswith Matter, arXiv:2311.00770.
  • [13]H.M. Lee, M.Park, and V.Sanz, Gravity-mediated (or Composite) DarkMatter, Eur. Phys. J. C 74 (2014) 2715,[arXiv:1306.4107].
  • [14]T.D. Rueter, T.G. Rizzo, and J.L. Hewett, Gravity-Mediated Dark MatterAnnihilation in the Randall-Sundrum Model, JHEP 10 (2017) 094,[arXiv:1706.07540].
  • [15]E.Babichev, L.Marzola, M.Raidal, A.Schmidt-May, F.Urban, H.Veermäe, andM.von Strauss, Heavy spin-2 Dark Matter, JCAP 09 (2016) 016,[arXiv:1607.03497].
  • [16]S.Kraml, U.Laa, K.Mawatari, and K.Yamash*ta, Simplified dark mattermodels with a spin-2 mediator at the LHC, Eur. Phys. J. C 77 (2017),no.5 326, [arXiv:1701.07008].
  • [17]M.G. Folgado, A.Donini, and N.Rius, Gravity-mediated Scalar DarkMatter in Warped Extra-Dimensions,arXiv:1907.04340. [Erratum:JHEP 02, 129 (2022)].
  • [18]A.deGiorgi and S.Vogl, Dark matter interacting via a massive spin-2mediator in warped extra-dimensions, JHEP 11 (2021) 036,[arXiv:2105.06794].
  • [19]A.deGiorgi and S.Vogl, Warm dark matter from a gravitational freeze-inin extra dimensions, JHEP 04 (2023) 032,[arXiv:2208.03153].
  • [20]J.A. Gill, D.Sengupta, and A.G. Williams, Graviton-photon productionwith a massive spin-2 particle, Phys. Rev. D 108 (2023), no.5L051702, [arXiv:2303.04329].
  • [21]E.Gonzalo, M.Montero, G.Obied, and C.Vafa, Dark Dimension Gravitonsas Dark Matter, arXiv:2209.09249.
  • [22]L.A. Anchordoqui, I.Antoniadis, and D.Lust, Aspects of the darkdimension in cosmology, Phys. Rev. D 107 (2023), no.8 083530,[arXiv:2212.08527].
  • [23]G.F. Giudice and M.McCullough, A Clockwork Theory, JHEP 02(2017) 036, [arXiv:1610.07962].
  • [24]N.Arkani-Hamed, S.Dimopoulos, and G.R. Dvali, The Hierarchy problemand new dimensions at a millimeter, Phys. Lett. B 429 (1998)263–272, [hep-ph/9803315].
  • [25]L.Randall and R.Sundrum, A Large mass hierarchy from a small extradimension, Phys. Rev. Lett. 83 (1999) 3370–3373,[hep-ph/9905221].
  • [26]V.A. Marchenko, Sturm-Liouville Operators and Applications.Birkhauser Verlag, CHE, 1986.
  • [27]R.S. Chivukula, E.H. Simmons, and X.Wang, Supersymmetry and sum rulesin the Goldberger-Wise model, Phys. Rev. D 106 (2022), no.3 035026,[arXiv:2207.02887].
Gravity-Matter Sum Rules in models with a single extra-dimension (2024)

References

Top Articles
Latest Posts
Article information

Author: Kelle Weber

Last Updated:

Views: 5316

Rating: 4.2 / 5 (53 voted)

Reviews: 84% of readers found this page helpful

Author information

Name: Kelle Weber

Birthday: 2000-08-05

Address: 6796 Juan Square, Markfort, MN 58988

Phone: +8215934114615

Job: Hospitality Director

Hobby: tabletop games, Foreign language learning, Leather crafting, Horseback riding, Swimming, Knapping, Handball

Introduction: My name is Kelle Weber, I am a magnificent, enchanting, fair, joyous, light, determined, joyous person who loves writing and wants to share my knowledge and understanding with you.